This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The volume of A is the supremum of the sequence vol*( A i^i ( -u n , n ) ) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volsup2 | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> B < ( vol ` A ) ) |
|
| 2 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> B e. RR* ) |
| 4 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 5 | volf | |- vol : dom vol --> ( 0 [,] +oo ) |
|
| 6 | 5 | ffvelcdmi | |- ( A e. dom vol -> ( vol ` A ) e. ( 0 [,] +oo ) ) |
| 7 | 4 6 | sselid | |- ( A e. dom vol -> ( vol ` A ) e. RR* ) |
| 8 | 7 | 3ad2ant1 | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( vol ` A ) e. RR* ) |
| 9 | xrltnle | |- ( ( B e. RR* /\ ( vol ` A ) e. RR* ) -> ( B < ( vol ` A ) <-> -. ( vol ` A ) <_ B ) ) |
|
| 10 | 3 8 9 | syl2anc | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( B < ( vol ` A ) <-> -. ( vol ` A ) <_ B ) ) |
| 11 | 1 10 | mpbid | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> -. ( vol ` A ) <_ B ) |
| 12 | negeq | |- ( m = n -> -u m = -u n ) |
|
| 13 | id | |- ( m = n -> m = n ) |
|
| 14 | 12 13 | oveq12d | |- ( m = n -> ( -u m [,] m ) = ( -u n [,] n ) ) |
| 15 | 14 | ineq2d | |- ( m = n -> ( A i^i ( -u m [,] m ) ) = ( A i^i ( -u n [,] n ) ) ) |
| 16 | eqid | |- ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) = ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) |
|
| 17 | ovex | |- ( -u n [,] n ) e. _V |
|
| 18 | 17 | inex2 | |- ( A i^i ( -u n [,] n ) ) e. _V |
| 19 | 15 16 18 | fvmpt | |- ( n e. NN -> ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) = ( A i^i ( -u n [,] n ) ) ) |
| 20 | 19 | iuneq2i | |- U_ n e. NN ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) = U_ n e. NN ( A i^i ( -u n [,] n ) ) |
| 21 | iunin2 | |- U_ n e. NN ( A i^i ( -u n [,] n ) ) = ( A i^i U_ n e. NN ( -u n [,] n ) ) |
|
| 22 | 20 21 | eqtri | |- U_ n e. NN ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) = ( A i^i U_ n e. NN ( -u n [,] n ) ) |
| 23 | simpl1 | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> A e. dom vol ) |
|
| 24 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 25 | 24 | adantl | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> n e. RR ) |
| 26 | 25 | renegcld | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> -u n e. RR ) |
| 27 | iccmbl | |- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) e. dom vol ) |
|
| 28 | 26 25 27 | syl2anc | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( -u n [,] n ) e. dom vol ) |
| 29 | inmbl | |- ( ( A e. dom vol /\ ( -u n [,] n ) e. dom vol ) -> ( A i^i ( -u n [,] n ) ) e. dom vol ) |
|
| 30 | 23 28 29 | syl2anc | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( A i^i ( -u n [,] n ) ) e. dom vol ) |
| 31 | 15 | cbvmptv | |- ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) = ( n e. NN |-> ( A i^i ( -u n [,] n ) ) ) |
| 32 | 30 31 | fmptd | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) : NN --> dom vol ) |
| 33 | 32 | ffnd | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) Fn NN ) |
| 34 | fniunfv | |- ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) Fn NN -> U_ n e. NN ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) = U. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) |
|
| 35 | 33 34 | syl | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> U_ n e. NN ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) = U. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) |
| 36 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 37 | 36 | 3ad2ant1 | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> A C_ RR ) |
| 38 | 37 | sselda | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ x e. A ) -> x e. RR ) |
| 39 | recn | |- ( x e. RR -> x e. CC ) |
|
| 40 | 39 | abscld | |- ( x e. RR -> ( abs ` x ) e. RR ) |
| 41 | arch | |- ( ( abs ` x ) e. RR -> E. n e. NN ( abs ` x ) < n ) |
|
| 42 | 40 41 | syl | |- ( x e. RR -> E. n e. NN ( abs ` x ) < n ) |
| 43 | ltle | |- ( ( ( abs ` x ) e. RR /\ n e. RR ) -> ( ( abs ` x ) < n -> ( abs ` x ) <_ n ) ) |
|
| 44 | 40 24 43 | syl2an | |- ( ( x e. RR /\ n e. NN ) -> ( ( abs ` x ) < n -> ( abs ` x ) <_ n ) ) |
| 45 | id | |- ( ( x e. RR /\ -u n <_ x /\ x <_ n ) -> ( x e. RR /\ -u n <_ x /\ x <_ n ) ) |
|
| 46 | 45 | 3expib | |- ( x e. RR -> ( ( -u n <_ x /\ x <_ n ) -> ( x e. RR /\ -u n <_ x /\ x <_ n ) ) ) |
| 47 | 46 | adantr | |- ( ( x e. RR /\ n e. NN ) -> ( ( -u n <_ x /\ x <_ n ) -> ( x e. RR /\ -u n <_ x /\ x <_ n ) ) ) |
| 48 | absle | |- ( ( x e. RR /\ n e. RR ) -> ( ( abs ` x ) <_ n <-> ( -u n <_ x /\ x <_ n ) ) ) |
|
| 49 | 24 48 | sylan2 | |- ( ( x e. RR /\ n e. NN ) -> ( ( abs ` x ) <_ n <-> ( -u n <_ x /\ x <_ n ) ) ) |
| 50 | 24 | adantl | |- ( ( x e. RR /\ n e. NN ) -> n e. RR ) |
| 51 | 50 | renegcld | |- ( ( x e. RR /\ n e. NN ) -> -u n e. RR ) |
| 52 | elicc2 | |- ( ( -u n e. RR /\ n e. RR ) -> ( x e. ( -u n [,] n ) <-> ( x e. RR /\ -u n <_ x /\ x <_ n ) ) ) |
|
| 53 | 51 50 52 | syl2anc | |- ( ( x e. RR /\ n e. NN ) -> ( x e. ( -u n [,] n ) <-> ( x e. RR /\ -u n <_ x /\ x <_ n ) ) ) |
| 54 | 47 49 53 | 3imtr4d | |- ( ( x e. RR /\ n e. NN ) -> ( ( abs ` x ) <_ n -> x e. ( -u n [,] n ) ) ) |
| 55 | 44 54 | syld | |- ( ( x e. RR /\ n e. NN ) -> ( ( abs ` x ) < n -> x e. ( -u n [,] n ) ) ) |
| 56 | 55 | reximdva | |- ( x e. RR -> ( E. n e. NN ( abs ` x ) < n -> E. n e. NN x e. ( -u n [,] n ) ) ) |
| 57 | 42 56 | mpd | |- ( x e. RR -> E. n e. NN x e. ( -u n [,] n ) ) |
| 58 | 38 57 | syl | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ x e. A ) -> E. n e. NN x e. ( -u n [,] n ) ) |
| 59 | 58 | ex | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( x e. A -> E. n e. NN x e. ( -u n [,] n ) ) ) |
| 60 | eliun | |- ( x e. U_ n e. NN ( -u n [,] n ) <-> E. n e. NN x e. ( -u n [,] n ) ) |
|
| 61 | 59 60 | imbitrrdi | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( x e. A -> x e. U_ n e. NN ( -u n [,] n ) ) ) |
| 62 | 61 | ssrdv | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> A C_ U_ n e. NN ( -u n [,] n ) ) |
| 63 | dfss2 | |- ( A C_ U_ n e. NN ( -u n [,] n ) <-> ( A i^i U_ n e. NN ( -u n [,] n ) ) = A ) |
|
| 64 | 62 63 | sylib | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( A i^i U_ n e. NN ( -u n [,] n ) ) = A ) |
| 65 | 22 35 64 | 3eqtr3a | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> U. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) = A ) |
| 66 | 65 | fveq2d | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( vol ` U. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) = ( vol ` A ) ) |
| 67 | peano2re | |- ( n e. RR -> ( n + 1 ) e. RR ) |
|
| 68 | 25 67 | syl | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( n + 1 ) e. RR ) |
| 69 | 68 | renegcld | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> -u ( n + 1 ) e. RR ) |
| 70 | 25 | lep1d | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> n <_ ( n + 1 ) ) |
| 71 | 25 68 | lenegd | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( n <_ ( n + 1 ) <-> -u ( n + 1 ) <_ -u n ) ) |
| 72 | 70 71 | mpbid | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> -u ( n + 1 ) <_ -u n ) |
| 73 | iccss | |- ( ( ( -u ( n + 1 ) e. RR /\ ( n + 1 ) e. RR ) /\ ( -u ( n + 1 ) <_ -u n /\ n <_ ( n + 1 ) ) ) -> ( -u n [,] n ) C_ ( -u ( n + 1 ) [,] ( n + 1 ) ) ) |
|
| 74 | 69 68 72 70 73 | syl22anc | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( -u n [,] n ) C_ ( -u ( n + 1 ) [,] ( n + 1 ) ) ) |
| 75 | sslin | |- ( ( -u n [,] n ) C_ ( -u ( n + 1 ) [,] ( n + 1 ) ) -> ( A i^i ( -u n [,] n ) ) C_ ( A i^i ( -u ( n + 1 ) [,] ( n + 1 ) ) ) ) |
|
| 76 | 74 75 | syl | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( A i^i ( -u n [,] n ) ) C_ ( A i^i ( -u ( n + 1 ) [,] ( n + 1 ) ) ) ) |
| 77 | 19 | adantl | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) = ( A i^i ( -u n [,] n ) ) ) |
| 78 | peano2nn | |- ( n e. NN -> ( n + 1 ) e. NN ) |
|
| 79 | 78 | adantl | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 80 | negeq | |- ( m = ( n + 1 ) -> -u m = -u ( n + 1 ) ) |
|
| 81 | id | |- ( m = ( n + 1 ) -> m = ( n + 1 ) ) |
|
| 82 | 80 81 | oveq12d | |- ( m = ( n + 1 ) -> ( -u m [,] m ) = ( -u ( n + 1 ) [,] ( n + 1 ) ) ) |
| 83 | 82 | ineq2d | |- ( m = ( n + 1 ) -> ( A i^i ( -u m [,] m ) ) = ( A i^i ( -u ( n + 1 ) [,] ( n + 1 ) ) ) ) |
| 84 | ovex | |- ( -u ( n + 1 ) [,] ( n + 1 ) ) e. _V |
|
| 85 | 84 | inex2 | |- ( A i^i ( -u ( n + 1 ) [,] ( n + 1 ) ) ) e. _V |
| 86 | 83 16 85 | fvmpt | |- ( ( n + 1 ) e. NN -> ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` ( n + 1 ) ) = ( A i^i ( -u ( n + 1 ) [,] ( n + 1 ) ) ) ) |
| 87 | 79 86 | syl | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` ( n + 1 ) ) = ( A i^i ( -u ( n + 1 ) [,] ( n + 1 ) ) ) ) |
| 88 | 76 77 87 | 3sstr4d | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) C_ ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` ( n + 1 ) ) ) |
| 89 | 88 | ralrimiva | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> A. n e. NN ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) C_ ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` ( n + 1 ) ) ) |
| 90 | volsup | |- ( ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) : NN --> dom vol /\ A. n e. NN ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) C_ ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` ( n + 1 ) ) ) -> ( vol ` U. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) = sup ( ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) , RR* , < ) ) |
|
| 91 | 32 89 90 | syl2anc | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( vol ` U. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) = sup ( ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) , RR* , < ) ) |
| 92 | 66 91 | eqtr3d | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( vol ` A ) = sup ( ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) , RR* , < ) ) |
| 93 | 92 | breq1d | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( ( vol ` A ) <_ B <-> sup ( ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) , RR* , < ) <_ B ) ) |
| 94 | imassrn | |- ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) C_ ran vol |
|
| 95 | frn | |- ( vol : dom vol --> ( 0 [,] +oo ) -> ran vol C_ ( 0 [,] +oo ) ) |
|
| 96 | 5 95 | ax-mp | |- ran vol C_ ( 0 [,] +oo ) |
| 97 | 96 4 | sstri | |- ran vol C_ RR* |
| 98 | 94 97 | sstri | |- ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) C_ RR* |
| 99 | supxrleub | |- ( ( ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) C_ RR* /\ B e. RR* ) -> ( sup ( ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) , RR* , < ) <_ B <-> A. n e. ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) n <_ B ) ) |
|
| 100 | 98 3 99 | sylancr | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( sup ( ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) , RR* , < ) <_ B <-> A. n e. ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) n <_ B ) ) |
| 101 | ffn | |- ( vol : dom vol --> ( 0 [,] +oo ) -> vol Fn dom vol ) |
|
| 102 | 5 101 | ax-mp | |- vol Fn dom vol |
| 103 | 32 | frnd | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) C_ dom vol ) |
| 104 | breq1 | |- ( n = ( vol ` z ) -> ( n <_ B <-> ( vol ` z ) <_ B ) ) |
|
| 105 | 104 | ralima | |- ( ( vol Fn dom vol /\ ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) C_ dom vol ) -> ( A. n e. ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) n <_ B <-> A. z e. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ( vol ` z ) <_ B ) ) |
| 106 | 102 103 105 | sylancr | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( A. n e. ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) n <_ B <-> A. z e. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ( vol ` z ) <_ B ) ) |
| 107 | fveq2 | |- ( z = ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) -> ( vol ` z ) = ( vol ` ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) ) ) |
|
| 108 | 107 | breq1d | |- ( z = ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) -> ( ( vol ` z ) <_ B <-> ( vol ` ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) ) <_ B ) ) |
| 109 | 108 | ralrn | |- ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) Fn NN -> ( A. z e. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ( vol ` z ) <_ B <-> A. n e. NN ( vol ` ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) ) <_ B ) ) |
| 110 | 33 109 | syl | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( A. z e. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ( vol ` z ) <_ B <-> A. n e. NN ( vol ` ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) ) <_ B ) ) |
| 111 | 19 | fveq2d | |- ( n e. NN -> ( vol ` ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) ) = ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |
| 112 | 111 | breq1d | |- ( n e. NN -> ( ( vol ` ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) ) <_ B <-> ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) ) |
| 113 | 112 | ralbiia | |- ( A. n e. NN ( vol ` ( ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ` n ) ) <_ B <-> A. n e. NN ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) |
| 114 | 110 113 | bitrdi | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( A. z e. ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ( vol ` z ) <_ B <-> A. n e. NN ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) ) |
| 115 | 106 114 | bitrd | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( A. n e. ( vol " ran ( m e. NN |-> ( A i^i ( -u m [,] m ) ) ) ) n <_ B <-> A. n e. NN ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) ) |
| 116 | 93 100 115 | 3bitrd | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( ( vol ` A ) <_ B <-> A. n e. NN ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) ) |
| 117 | 11 116 | mtbid | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> -. A. n e. NN ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) |
| 118 | rexnal | |- ( E. n e. NN -. ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B <-> -. A. n e. NN ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) |
|
| 119 | 117 118 | sylibr | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> E. n e. NN -. ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) |
| 120 | 3 | adantr | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> B e. RR* ) |
| 121 | 5 | ffvelcdmi | |- ( ( A i^i ( -u n [,] n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. ( 0 [,] +oo ) ) |
| 122 | 4 121 | sselid | |- ( ( A i^i ( -u n [,] n ) ) e. dom vol -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) |
| 123 | 30 122 | syl | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) |
| 124 | xrltnle | |- ( ( B e. RR* /\ ( vol ` ( A i^i ( -u n [,] n ) ) ) e. RR* ) -> ( B < ( vol ` ( A i^i ( -u n [,] n ) ) ) <-> -. ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) ) |
|
| 125 | 120 123 124 | syl2anc | |- ( ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) /\ n e. NN ) -> ( B < ( vol ` ( A i^i ( -u n [,] n ) ) ) <-> -. ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) ) |
| 126 | 125 | rexbidva | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> ( E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) <-> E. n e. NN -. ( vol ` ( A i^i ( -u n [,] n ) ) ) <_ B ) ) |
| 127 | 119 126 | mpbird | |- ( ( A e. dom vol /\ B e. RR /\ B < ( vol ` A ) ) -> E. n e. NN B < ( vol ` ( A i^i ( -u n [,] n ) ) ) ) |