This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any symmetrical entourage V and any relation M , build a neighborhood of M . First part of proposition 2 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utoptop.1 | |- J = ( unifTop ` U ) |
|
| Assertion | utop2nei | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | |- J = ( unifTop ` U ) |
|
| 2 | utoptop | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. Top ) |
|
| 3 | 1 2 | eqeltrid | |- ( U e. ( UnifOn ` X ) -> J e. Top ) |
| 4 | txtop | |- ( ( J e. Top /\ J e. Top ) -> ( J tX J ) e. Top ) |
|
| 5 | 3 3 4 | syl2anc | |- ( U e. ( UnifOn ` X ) -> ( J tX J ) e. Top ) |
| 6 | 5 | 3ad2ant1 | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( J tX J ) e. Top ) |
| 7 | 6 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( J tX J ) e. Top ) |
| 8 | 0nei | |- ( ( J tX J ) e. Top -> (/) e. ( ( nei ` ( J tX J ) ) ` (/) ) ) |
|
| 9 | 7 8 | syl | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> (/) e. ( ( nei ` ( J tX J ) ) ` (/) ) ) |
| 10 | coeq1 | |- ( M = (/) -> ( M o. V ) = ( (/) o. V ) ) |
|
| 11 | co01 | |- ( (/) o. V ) = (/) |
|
| 12 | 10 11 | eqtrdi | |- ( M = (/) -> ( M o. V ) = (/) ) |
| 13 | 12 | coeq2d | |- ( M = (/) -> ( V o. ( M o. V ) ) = ( V o. (/) ) ) |
| 14 | co02 | |- ( V o. (/) ) = (/) |
|
| 15 | 13 14 | eqtrdi | |- ( M = (/) -> ( V o. ( M o. V ) ) = (/) ) |
| 16 | 15 | adantl | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( V o. ( M o. V ) ) = (/) ) |
| 17 | simpr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> M = (/) ) |
|
| 18 | 17 | fveq2d | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( ( nei ` ( J tX J ) ) ` M ) = ( ( nei ` ( J tX J ) ) ` (/) ) ) |
| 19 | 9 16 18 | 3eltr4d | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M = (/) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |
| 20 | 6 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( J tX J ) e. Top ) |
| 21 | simpl1 | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> U e. ( UnifOn ` X ) ) |
|
| 22 | 21 3 | syl | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> J e. Top ) |
| 23 | simpl2l | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> V e. U ) |
|
| 24 | simp3 | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> M C_ ( X X. X ) ) |
|
| 25 | 24 | sselda | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> r e. ( X X. X ) ) |
| 26 | xp1st | |- ( r e. ( X X. X ) -> ( 1st ` r ) e. X ) |
|
| 27 | 25 26 | syl | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( 1st ` r ) e. X ) |
| 28 | 1 | utopsnnei | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 1st ` r ) e. X ) -> ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) ) |
| 29 | 21 23 27 28 | syl3anc | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) ) |
| 30 | xp2nd | |- ( r e. ( X X. X ) -> ( 2nd ` r ) e. X ) |
|
| 31 | 25 30 | syl | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( 2nd ` r ) e. X ) |
| 32 | 1 | utopsnnei | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 2nd ` r ) e. X ) -> ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) |
| 33 | 21 23 31 32 | syl3anc | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) |
| 34 | eqid | |- U. J = U. J |
|
| 35 | 34 34 | neitx | |- ( ( ( J e. Top /\ J e. Top ) /\ ( ( V " { ( 1st ` r ) } ) e. ( ( nei ` J ) ` { ( 1st ` r ) } ) /\ ( V " { ( 2nd ` r ) } ) e. ( ( nei ` J ) ` { ( 2nd ` r ) } ) ) ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) ) |
| 36 | 22 22 29 33 35 | syl22anc | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) ) |
| 37 | fvex | |- ( 1st ` r ) e. _V |
|
| 38 | fvex | |- ( 2nd ` r ) e. _V |
|
| 39 | 37 38 | xpsn | |- ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) = { <. ( 1st ` r ) , ( 2nd ` r ) >. } |
| 40 | 39 | fveq2i | |- ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` r ) } X. { ( 2nd ` r ) } ) ) = ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) |
| 41 | 36 40 | eleqtrdi | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) ) |
| 42 | 24 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> M C_ ( X X. X ) ) |
| 43 | xpss | |- ( X X. X ) C_ ( _V X. _V ) |
|
| 44 | sstr | |- ( ( M C_ ( X X. X ) /\ ( X X. X ) C_ ( _V X. _V ) ) -> M C_ ( _V X. _V ) ) |
|
| 45 | 43 44 | mpan2 | |- ( M C_ ( X X. X ) -> M C_ ( _V X. _V ) ) |
| 46 | df-rel | |- ( Rel M <-> M C_ ( _V X. _V ) ) |
|
| 47 | 45 46 | sylibr | |- ( M C_ ( X X. X ) -> Rel M ) |
| 48 | 42 47 | syl | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> Rel M ) |
| 49 | 1st2nd | |- ( ( Rel M /\ r e. M ) -> r = <. ( 1st ` r ) , ( 2nd ` r ) >. ) |
|
| 50 | 48 49 | sylancom | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> r = <. ( 1st ` r ) , ( 2nd ` r ) >. ) |
| 51 | 50 | sneqd | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> { r } = { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) |
| 52 | 51 | fveq2d | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( nei ` ( J tX J ) ) ` { r } ) = ( ( nei ` ( J tX J ) ) ` { <. ( 1st ` r ) , ( 2nd ` r ) >. } ) ) |
| 53 | 41 52 | eleqtrrd | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 54 | relxp | |- Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) |
|
| 55 | 54 | a1i | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) |
| 56 | 1st2nd | |- ( ( Rel ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 57 | 55 56 | sylancom | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 58 | simpll2 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( V e. U /\ `' V = V ) ) |
|
| 59 | 58 | simprd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> `' V = V ) |
| 60 | simpll1 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> U e. ( UnifOn ` X ) ) |
|
| 61 | 58 | simpld | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> V e. U ) |
| 62 | ustrel | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> Rel V ) |
|
| 63 | 60 61 62 | syl2anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> Rel V ) |
| 64 | xp1st | |- ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) |
|
| 65 | 64 | adantl | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) |
| 66 | elrelimasn | |- ( Rel V -> ( ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
|
| 67 | 66 | biimpa | |- ( ( Rel V /\ ( 1st ` z ) e. ( V " { ( 1st ` r ) } ) ) -> ( 1st ` r ) V ( 1st ` z ) ) |
| 68 | 63 65 67 | syl2anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` r ) V ( 1st ` z ) ) |
| 69 | fvex | |- ( 1st ` z ) e. _V |
|
| 70 | 37 69 | brcnv | |- ( ( 1st ` r ) `' V ( 1st ` z ) <-> ( 1st ` z ) V ( 1st ` r ) ) |
| 71 | breq | |- ( `' V = V -> ( ( 1st ` r ) `' V ( 1st ` z ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
|
| 72 | 70 71 | bitr3id | |- ( `' V = V -> ( ( 1st ` z ) V ( 1st ` r ) <-> ( 1st ` r ) V ( 1st ` z ) ) ) |
| 73 | 72 | biimpar | |- ( ( `' V = V /\ ( 1st ` r ) V ( 1st ` z ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
| 74 | 59 68 73 | syl2anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
| 75 | simpll3 | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> M C_ ( X X. X ) ) |
|
| 76 | simplr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> r e. M ) |
|
| 77 | 1st2ndbr | |- ( ( Rel M /\ r e. M ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
|
| 78 | 47 77 | sylan | |- ( ( M C_ ( X X. X ) /\ r e. M ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
| 79 | 75 76 78 | syl2anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
| 80 | xp2nd | |- ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) |
|
| 81 | 80 | adantl | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) |
| 82 | elrelimasn | |- ( Rel V -> ( ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) <-> ( 2nd ` r ) V ( 2nd ` z ) ) ) |
|
| 83 | 82 | biimpa | |- ( ( Rel V /\ ( 2nd ` z ) e. ( V " { ( 2nd ` r ) } ) ) -> ( 2nd ` r ) V ( 2nd ` z ) ) |
| 84 | 63 81 83 | syl2anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 2nd ` r ) V ( 2nd ` z ) ) |
| 85 | 69 38 37 | 3pm3.2i | |- ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) |
| 86 | brcogw | |- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) /\ ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
|
| 87 | 85 86 | mpan | |- ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
| 88 | fvex | |- ( 2nd ` z ) e. _V |
|
| 89 | 69 88 38 | 3pm3.2i | |- ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) |
| 90 | brcogw | |- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) /\ ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
|
| 91 | 89 90 | mpan | |- ( ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 92 | 87 91 | sylan | |- ( ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 93 | 74 79 84 92 | syl21anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 94 | df-br | |- ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
|
| 95 | 93 94 | sylib | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
| 96 | 57 95 | eqeltrd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) /\ z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) ) -> z e. ( V o. ( M o. V ) ) ) |
| 97 | 96 | ex | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( z e. ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) -> z e. ( V o. ( M o. V ) ) ) ) |
| 98 | 97 | ssrdv | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) C_ ( V o. ( M o. V ) ) ) |
| 99 | simp1 | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> U e. ( UnifOn ` X ) ) |
|
| 100 | simp2l | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> V e. U ) |
|
| 101 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> V C_ ( X X. X ) ) |
|
| 102 | 99 100 101 | syl2anc | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> V C_ ( X X. X ) ) |
| 103 | coss1 | |- ( V C_ ( X X. X ) -> ( V o. ( M o. V ) ) C_ ( ( X X. X ) o. ( M o. V ) ) ) |
|
| 104 | 102 103 | syl | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ ( ( X X. X ) o. ( M o. V ) ) ) |
| 105 | coss1 | |- ( M C_ ( X X. X ) -> ( M o. V ) C_ ( ( X X. X ) o. V ) ) |
|
| 106 | 24 105 | syl | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( M o. V ) C_ ( ( X X. X ) o. V ) ) |
| 107 | coss2 | |- ( V C_ ( X X. X ) -> ( ( X X. X ) o. V ) C_ ( ( X X. X ) o. ( X X. X ) ) ) |
|
| 108 | xpcoid | |- ( ( X X. X ) o. ( X X. X ) ) = ( X X. X ) |
|
| 109 | 107 108 | sseqtrdi | |- ( V C_ ( X X. X ) -> ( ( X X. X ) o. V ) C_ ( X X. X ) ) |
| 110 | 102 109 | syl | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( ( X X. X ) o. V ) C_ ( X X. X ) ) |
| 111 | 106 110 | sstrd | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( M o. V ) C_ ( X X. X ) ) |
| 112 | coss2 | |- ( ( M o. V ) C_ ( X X. X ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( ( X X. X ) o. ( X X. X ) ) ) |
|
| 113 | 112 108 | sseqtrdi | |- ( ( M o. V ) C_ ( X X. X ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( X X. X ) ) |
| 114 | 111 113 | syl | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( ( X X. X ) o. ( M o. V ) ) C_ ( X X. X ) ) |
| 115 | 104 114 | sstrd | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ ( X X. X ) ) |
| 116 | utopbas | |- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |
|
| 117 | 1 | unieqi | |- U. J = U. ( unifTop ` U ) |
| 118 | 116 117 | eqtr4di | |- ( U e. ( UnifOn ` X ) -> X = U. J ) |
| 119 | 118 | sqxpeqd | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) = ( U. J X. U. J ) ) |
| 120 | 34 34 | txuni | |- ( ( J e. Top /\ J e. Top ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
| 121 | 3 3 120 | syl2anc | |- ( U e. ( UnifOn ` X ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
| 122 | 119 121 | eqtrd | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) = U. ( J tX J ) ) |
| 123 | 122 | 3ad2ant1 | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( X X. X ) = U. ( J tX J ) ) |
| 124 | 115 123 | sseqtrd | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) |
| 125 | 124 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) |
| 126 | eqid | |- U. ( J tX J ) = U. ( J tX J ) |
|
| 127 | 126 | ssnei2 | |- ( ( ( ( J tX J ) e. Top /\ ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) /\ ( ( ( V " { ( 1st ` r ) } ) X. ( V " { ( 2nd ` r ) } ) ) C_ ( V o. ( M o. V ) ) /\ ( V o. ( M o. V ) ) C_ U. ( J tX J ) ) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 128 | 20 53 98 125 127 | syl22anc | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ r e. M ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 129 | 128 | ralrimiva | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 130 | 129 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) |
| 131 | 6 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( J tX J ) e. Top ) |
| 132 | 24 123 | sseqtrd | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> M C_ U. ( J tX J ) ) |
| 133 | 132 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> M C_ U. ( J tX J ) ) |
| 134 | simpr | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> M =/= (/) ) |
|
| 135 | 126 | neips | |- ( ( ( J tX J ) e. Top /\ M C_ U. ( J tX J ) /\ M =/= (/) ) -> ( ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) <-> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) ) |
| 136 | 131 133 134 135 | syl3anc | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) <-> A. r e. M ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` { r } ) ) ) |
| 137 | 130 136 | mpbird | |- ( ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) /\ M =/= (/) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |
| 138 | 19 137 | pm2.61dane | |- ( ( U e. ( UnifOn ` X ) /\ ( V e. U /\ `' V = V ) /\ M C_ ( X X. X ) ) -> ( V o. ( M o. V ) ) e. ( ( nei ` ( J tX J ) ) ` M ) ) |