This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txuni.1 | |- X = U. R |
|
| txuni.2 | |- Y = U. S |
||
| Assertion | txuni | |- ( ( R e. Top /\ S e. Top ) -> ( X X. Y ) = U. ( R tX S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txuni.1 | |- X = U. R |
|
| 2 | txuni.2 | |- Y = U. S |
|
| 3 | 1 | toptopon | |- ( R e. Top <-> R e. ( TopOn ` X ) ) |
| 4 | 2 | toptopon | |- ( S e. Top <-> S e. ( TopOn ` Y ) ) |
| 5 | txtopon | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( R tX S ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 6 | 3 4 5 | syl2anb | |- ( ( R e. Top /\ S e. Top ) -> ( R tX S ) e. ( TopOn ` ( X X. Y ) ) ) |
| 7 | toponuni | |- ( ( R tX S ) e. ( TopOn ` ( X X. Y ) ) -> ( X X. Y ) = U. ( R tX S ) ) |
|
| 8 | 6 7 | syl | |- ( ( R e. Top /\ S e. Top ) -> ( X X. Y ) = U. ( R tX S ) ) |