This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txtop | |- ( ( R e. Top /\ S e. Top ) -> ( R tX S ) e. Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ran ( u e. R , v e. S |-> ( u X. v ) ) = ran ( u e. R , v e. S |-> ( u X. v ) ) |
|
| 2 | 1 | txval | |- ( ( R e. Top /\ S e. Top ) -> ( R tX S ) = ( topGen ` ran ( u e. R , v e. S |-> ( u X. v ) ) ) ) |
| 3 | topbas | |- ( R e. Top -> R e. TopBases ) |
|
| 4 | topbas | |- ( S e. Top -> S e. TopBases ) |
|
| 5 | 1 | txbas | |- ( ( R e. TopBases /\ S e. TopBases ) -> ran ( u e. R , v e. S |-> ( u X. v ) ) e. TopBases ) |
| 6 | 3 4 5 | syl2an | |- ( ( R e. Top /\ S e. Top ) -> ran ( u e. R , v e. S |-> ( u X. v ) ) e. TopBases ) |
| 7 | tgcl | |- ( ran ( u e. R , v e. S |-> ( u X. v ) ) e. TopBases -> ( topGen ` ran ( u e. R , v e. S |-> ( u X. v ) ) ) e. Top ) |
|
| 8 | 6 7 | syl | |- ( ( R e. Top /\ S e. Top ) -> ( topGen ` ran ( u e. R , v e. S |-> ( u X. v ) ) ) e. Top ) |
| 9 | 2 8 | eqeltrd | |- ( ( R e. Top /\ S e. Top ) -> ( R tX S ) e. Top ) |