This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcogw | |- ( ( ( A e. V /\ B e. W /\ X e. Z ) /\ ( A D X /\ X C B ) ) -> A ( C o. D ) B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | |- ( ( A e. V /\ B e. W /\ X e. Z ) -> ( A e. V /\ B e. W ) ) |
|
| 2 | breq2 | |- ( x = X -> ( A D x <-> A D X ) ) |
|
| 3 | breq1 | |- ( x = X -> ( x C B <-> X C B ) ) |
|
| 4 | 2 3 | anbi12d | |- ( x = X -> ( ( A D x /\ x C B ) <-> ( A D X /\ X C B ) ) ) |
| 5 | 4 | spcegv | |- ( X e. Z -> ( ( A D X /\ X C B ) -> E. x ( A D x /\ x C B ) ) ) |
| 6 | 5 | imp | |- ( ( X e. Z /\ ( A D X /\ X C B ) ) -> E. x ( A D x /\ x C B ) ) |
| 7 | 6 | 3ad2antl3 | |- ( ( ( A e. V /\ B e. W /\ X e. Z ) /\ ( A D X /\ X C B ) ) -> E. x ( A D x /\ x C B ) ) |
| 8 | brcog | |- ( ( A e. V /\ B e. W ) -> ( A ( C o. D ) B <-> E. x ( A D x /\ x C B ) ) ) |
|
| 9 | 8 | biimpar | |- ( ( ( A e. V /\ B e. W ) /\ E. x ( A D x /\ x C B ) ) -> A ( C o. D ) B ) |
| 10 | 1 7 9 | syl2an2r | |- ( ( ( A e. V /\ B e. W /\ X e. Z ) /\ ( A D X /\ X C B ) ) -> A ( C o. D ) B ) |