This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neitx.x | |- X = U. J |
|
| neitx.y | |- Y = U. K |
||
| Assertion | neitx | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( A X. B ) e. ( ( nei ` ( J tX K ) ) ` ( C X. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neitx.x | |- X = U. J |
|
| 2 | neitx.y | |- Y = U. K |
|
| 3 | 1 | neii1 | |- ( ( J e. Top /\ A e. ( ( nei ` J ) ` C ) ) -> A C_ X ) |
| 4 | 3 | ad2ant2r | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> A C_ X ) |
| 5 | 2 | neii1 | |- ( ( K e. Top /\ B e. ( ( nei ` K ) ` D ) ) -> B C_ Y ) |
| 6 | 5 | ad2ant2l | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> B C_ Y ) |
| 7 | xpss12 | |- ( ( A C_ X /\ B C_ Y ) -> ( A X. B ) C_ ( X X. Y ) ) |
|
| 8 | 4 6 7 | syl2anc | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( A X. B ) C_ ( X X. Y ) ) |
| 9 | 1 2 | txuni | |- ( ( J e. Top /\ K e. Top ) -> ( X X. Y ) = U. ( J tX K ) ) |
| 10 | 9 | adantr | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( X X. Y ) = U. ( J tX K ) ) |
| 11 | 8 10 | sseqtrd | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( A X. B ) C_ U. ( J tX K ) ) |
| 12 | simp-5l | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> ( J e. Top /\ K e. Top ) ) |
|
| 13 | simp-4r | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> a e. J ) |
|
| 14 | simplr | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> b e. K ) |
|
| 15 | txopn | |- ( ( ( J e. Top /\ K e. Top ) /\ ( a e. J /\ b e. K ) ) -> ( a X. b ) e. ( J tX K ) ) |
|
| 16 | 12 13 14 15 | syl12anc | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> ( a X. b ) e. ( J tX K ) ) |
| 17 | simpr1l | |- ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( ( C C_ a /\ a C_ A ) /\ b e. K /\ ( D C_ b /\ b C_ B ) ) ) -> C C_ a ) |
|
| 18 | 17 | 3anassrs | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> C C_ a ) |
| 19 | simprl | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> D C_ b ) |
|
| 20 | xpss12 | |- ( ( C C_ a /\ D C_ b ) -> ( C X. D ) C_ ( a X. b ) ) |
|
| 21 | 18 19 20 | syl2anc | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> ( C X. D ) C_ ( a X. b ) ) |
| 22 | simpr1r | |- ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( ( C C_ a /\ a C_ A ) /\ b e. K /\ ( D C_ b /\ b C_ B ) ) ) -> a C_ A ) |
|
| 23 | 22 | 3anassrs | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> a C_ A ) |
| 24 | simprr | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> b C_ B ) |
|
| 25 | xpss12 | |- ( ( a C_ A /\ b C_ B ) -> ( a X. b ) C_ ( A X. B ) ) |
|
| 26 | 23 24 25 | syl2anc | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> ( a X. b ) C_ ( A X. B ) ) |
| 27 | sseq2 | |- ( c = ( a X. b ) -> ( ( C X. D ) C_ c <-> ( C X. D ) C_ ( a X. b ) ) ) |
|
| 28 | sseq1 | |- ( c = ( a X. b ) -> ( c C_ ( A X. B ) <-> ( a X. b ) C_ ( A X. B ) ) ) |
|
| 29 | 27 28 | anbi12d | |- ( c = ( a X. b ) -> ( ( ( C X. D ) C_ c /\ c C_ ( A X. B ) ) <-> ( ( C X. D ) C_ ( a X. b ) /\ ( a X. b ) C_ ( A X. B ) ) ) ) |
| 30 | 29 | rspcev | |- ( ( ( a X. b ) e. ( J tX K ) /\ ( ( C X. D ) C_ ( a X. b ) /\ ( a X. b ) C_ ( A X. B ) ) ) -> E. c e. ( J tX K ) ( ( C X. D ) C_ c /\ c C_ ( A X. B ) ) ) |
| 31 | 16 21 26 30 | syl12anc | |- ( ( ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) /\ b e. K ) /\ ( D C_ b /\ b C_ B ) ) -> E. c e. ( J tX K ) ( ( C X. D ) C_ c /\ c C_ ( A X. B ) ) ) |
| 32 | neii2 | |- ( ( K e. Top /\ B e. ( ( nei ` K ) ` D ) ) -> E. b e. K ( D C_ b /\ b C_ B ) ) |
|
| 33 | 32 | ad2ant2l | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> E. b e. K ( D C_ b /\ b C_ B ) ) |
| 34 | 33 | ad2antrr | |- ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) -> E. b e. K ( D C_ b /\ b C_ B ) ) |
| 35 | 31 34 | r19.29a | |- ( ( ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) /\ a e. J ) /\ ( C C_ a /\ a C_ A ) ) -> E. c e. ( J tX K ) ( ( C X. D ) C_ c /\ c C_ ( A X. B ) ) ) |
| 36 | neii2 | |- ( ( J e. Top /\ A e. ( ( nei ` J ) ` C ) ) -> E. a e. J ( C C_ a /\ a C_ A ) ) |
|
| 37 | 36 | ad2ant2r | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> E. a e. J ( C C_ a /\ a C_ A ) ) |
| 38 | 35 37 | r19.29a | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> E. c e. ( J tX K ) ( ( C X. D ) C_ c /\ c C_ ( A X. B ) ) ) |
| 39 | txtop | |- ( ( J e. Top /\ K e. Top ) -> ( J tX K ) e. Top ) |
|
| 40 | 39 | adantr | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( J tX K ) e. Top ) |
| 41 | 1 | neiss2 | |- ( ( J e. Top /\ A e. ( ( nei ` J ) ` C ) ) -> C C_ X ) |
| 42 | 41 | ad2ant2r | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> C C_ X ) |
| 43 | 2 | neiss2 | |- ( ( K e. Top /\ B e. ( ( nei ` K ) ` D ) ) -> D C_ Y ) |
| 44 | 43 | ad2ant2l | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> D C_ Y ) |
| 45 | xpss12 | |- ( ( C C_ X /\ D C_ Y ) -> ( C X. D ) C_ ( X X. Y ) ) |
|
| 46 | 42 44 45 | syl2anc | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( C X. D ) C_ ( X X. Y ) ) |
| 47 | 46 10 | sseqtrd | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( C X. D ) C_ U. ( J tX K ) ) |
| 48 | eqid | |- U. ( J tX K ) = U. ( J tX K ) |
|
| 49 | 48 | isnei | |- ( ( ( J tX K ) e. Top /\ ( C X. D ) C_ U. ( J tX K ) ) -> ( ( A X. B ) e. ( ( nei ` ( J tX K ) ) ` ( C X. D ) ) <-> ( ( A X. B ) C_ U. ( J tX K ) /\ E. c e. ( J tX K ) ( ( C X. D ) C_ c /\ c C_ ( A X. B ) ) ) ) ) |
| 50 | 40 47 49 | syl2anc | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( ( A X. B ) e. ( ( nei ` ( J tX K ) ) ` ( C X. D ) ) <-> ( ( A X. B ) C_ U. ( J tX K ) /\ E. c e. ( J tX K ) ( ( C X. D ) C_ c /\ c C_ ( A X. B ) ) ) ) ) |
| 51 | 11 38 50 | mpbir2and | |- ( ( ( J e. Top /\ K e. Top ) /\ ( A e. ( ( nei ` J ) ` C ) /\ B e. ( ( nei ` K ) ` D ) ) ) -> ( A X. B ) e. ( ( nei ` ( J tX K ) ) ` ( C X. D ) ) ) |