This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the topology induced by a uniform structure U . (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | utopbas | |- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopval | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = { a e. ~P X | A. x e. a E. v e. U ( v " { x } ) C_ a } ) |
|
| 2 | ssrab2 | |- { a e. ~P X | A. x e. a E. v e. U ( v " { x } ) C_ a } C_ ~P X |
|
| 3 | 1 2 | eqsstrdi | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) C_ ~P X ) |
| 4 | ssidd | |- ( U e. ( UnifOn ` X ) -> X C_ X ) |
|
| 5 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ v e. U ) -> v C_ ( X X. X ) ) |
|
| 6 | imassrn | |- ( v " { x } ) C_ ran v |
|
| 7 | rnss | |- ( v C_ ( X X. X ) -> ran v C_ ran ( X X. X ) ) |
|
| 8 | rnxpid | |- ran ( X X. X ) = X |
|
| 9 | 7 8 | sseqtrdi | |- ( v C_ ( X X. X ) -> ran v C_ X ) |
| 10 | 6 9 | sstrid | |- ( v C_ ( X X. X ) -> ( v " { x } ) C_ X ) |
| 11 | 5 10 | syl | |- ( ( U e. ( UnifOn ` X ) /\ v e. U ) -> ( v " { x } ) C_ X ) |
| 12 | 11 | ralrimiva | |- ( U e. ( UnifOn ` X ) -> A. v e. U ( v " { x } ) C_ X ) |
| 13 | ustne0 | |- ( U e. ( UnifOn ` X ) -> U =/= (/) ) |
|
| 14 | r19.2zb | |- ( U =/= (/) <-> ( A. v e. U ( v " { x } ) C_ X -> E. v e. U ( v " { x } ) C_ X ) ) |
|
| 15 | 13 14 | sylib | |- ( U e. ( UnifOn ` X ) -> ( A. v e. U ( v " { x } ) C_ X -> E. v e. U ( v " { x } ) C_ X ) ) |
| 16 | 12 15 | mpd | |- ( U e. ( UnifOn ` X ) -> E. v e. U ( v " { x } ) C_ X ) |
| 17 | 16 | ralrimivw | |- ( U e. ( UnifOn ` X ) -> A. x e. X E. v e. U ( v " { x } ) C_ X ) |
| 18 | elutop | |- ( U e. ( UnifOn ` X ) -> ( X e. ( unifTop ` U ) <-> ( X C_ X /\ A. x e. X E. v e. U ( v " { x } ) C_ X ) ) ) |
|
| 19 | 4 17 18 | mpbir2and | |- ( U e. ( UnifOn ` X ) -> X e. ( unifTop ` U ) ) |
| 20 | elpwuni | |- ( X e. ( unifTop ` U ) -> ( ( unifTop ` U ) C_ ~P X <-> U. ( unifTop ` U ) = X ) ) |
|
| 21 | 19 20 | syl | |- ( U e. ( UnifOn ` X ) -> ( ( unifTop ` U ) C_ ~P X <-> U. ( unifTop ` U ) = X ) ) |
| 22 | 3 21 | mpbid | |- ( U e. ( UnifOn ` X ) -> U. ( unifTop ` U ) = X ) |
| 23 | 22 | eqcomd | |- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |