This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Images of singletons by entourages V are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utoptop.1 | |- J = ( unifTop ` U ) |
|
| Assertion | utopsnnei | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ( V " { P } ) e. ( ( nei ` J ) ` { P } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | |- J = ( unifTop ` U ) |
|
| 2 | eqid | |- ( V " { P } ) = ( V " { P } ) |
|
| 3 | imaeq1 | |- ( v = V -> ( v " { P } ) = ( V " { P } ) ) |
|
| 4 | 3 | rspceeqv | |- ( ( V e. U /\ ( V " { P } ) = ( V " { P } ) ) -> E. v e. U ( V " { P } ) = ( v " { P } ) ) |
| 5 | 2 4 | mpan2 | |- ( V e. U -> E. v e. U ( V " { P } ) = ( v " { P } ) ) |
| 6 | 5 | 3ad2ant2 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> E. v e. U ( V " { P } ) = ( v " { P } ) ) |
| 7 | 1 | utopsnneip | |- ( ( U e. ( UnifOn ` X ) /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 8 | 7 | 3adant2 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ( ( nei ` J ) ` { P } ) = ran ( v e. U |-> ( v " { P } ) ) ) |
| 9 | 8 | eleq2d | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ( ( V " { P } ) e. ( ( nei ` J ) ` { P } ) <-> ( V " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) ) ) |
| 10 | imaexg | |- ( V e. U -> ( V " { P } ) e. _V ) |
|
| 11 | eqid | |- ( v e. U |-> ( v " { P } ) ) = ( v e. U |-> ( v " { P } ) ) |
|
| 12 | 11 | elrnmpt | |- ( ( V " { P } ) e. _V -> ( ( V " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) <-> E. v e. U ( V " { P } ) = ( v " { P } ) ) ) |
| 13 | 10 12 | syl | |- ( V e. U -> ( ( V " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) <-> E. v e. U ( V " { P } ) = ( v " { P } ) ) ) |
| 14 | 13 | 3ad2ant2 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ( ( V " { P } ) e. ran ( v e. U |-> ( v " { P } ) ) <-> E. v e. U ( V " { P } ) = ( v " { P } ) ) ) |
| 15 | 9 14 | bitrd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ( ( V " { P } ) e. ( ( nei ` J ) ` { P } ) <-> E. v e. U ( V " { P } ) = ( v " { P } ) ) ) |
| 16 | 6 15 | mpbird | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ P e. X ) -> ( V " { P } ) e. ( ( nei ` J ) ` { P } ) ) |