This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any symmetrical entourage V and any relation M , build a neighborhood of M . First part of proposition 2 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utoptop.1 | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| Assertion | utop2nei | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
| 2 | utoptop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ Top ) | |
| 3 | 1 2 | eqeltrid | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 4 | txtop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐽 ∈ Top ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) | |
| 5 | 3 3 4 | syl2anc | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
| 8 | 0nei | ⊢ ( ( 𝐽 ×t 𝐽 ) ∈ Top → ∅ ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ∅ ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ∅ ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ∅ ) ) |
| 10 | coeq1 | ⊢ ( 𝑀 = ∅ → ( 𝑀 ∘ 𝑉 ) = ( ∅ ∘ 𝑉 ) ) | |
| 11 | co01 | ⊢ ( ∅ ∘ 𝑉 ) = ∅ | |
| 12 | 10 11 | eqtrdi | ⊢ ( 𝑀 = ∅ → ( 𝑀 ∘ 𝑉 ) = ∅ ) |
| 13 | 12 | coeq2d | ⊢ ( 𝑀 = ∅ → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) = ( 𝑉 ∘ ∅ ) ) |
| 14 | co02 | ⊢ ( 𝑉 ∘ ∅ ) = ∅ | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝑀 = ∅ → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) = ∅ ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) = ∅ ) |
| 17 | simpr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → 𝑀 = ∅ ) | |
| 18 | 17 | fveq2d | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) = ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ∅ ) ) |
| 19 | 9 16 18 | 3eltr4d | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 = ∅ ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ) |
| 20 | 6 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
| 21 | simpl1 | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 22 | 21 3 | syl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝐽 ∈ Top ) |
| 23 | simpl2l | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑉 ∈ 𝑈 ) | |
| 24 | simp3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 25 | 24 | sselda | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑟 ∈ ( 𝑋 × 𝑋 ) ) |
| 26 | xp1st | ⊢ ( 𝑟 ∈ ( 𝑋 × 𝑋 ) → ( 1st ‘ 𝑟 ) ∈ 𝑋 ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 1st ‘ 𝑟 ) ∈ 𝑋 ) |
| 28 | 1 | utopsnnei | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ ( 1st ‘ 𝑟 ) ∈ 𝑋 ) → ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 1st ‘ 𝑟 ) } ) ) |
| 29 | 21 23 27 28 | syl3anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 1st ‘ 𝑟 ) } ) ) |
| 30 | xp2nd | ⊢ ( 𝑟 ∈ ( 𝑋 × 𝑋 ) → ( 2nd ‘ 𝑟 ) ∈ 𝑋 ) | |
| 31 | 25 30 | syl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 2nd ‘ 𝑟 ) ∈ 𝑋 ) |
| 32 | 1 | utopsnnei | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ∧ ( 2nd ‘ 𝑟 ) ∈ 𝑋 ) → ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 2nd ‘ 𝑟 ) } ) ) |
| 33 | 21 23 31 32 | syl3anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 2nd ‘ 𝑟 ) } ) ) |
| 34 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 35 | 34 34 | neitx | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐽 ∈ Top ) ∧ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 1st ‘ 𝑟 ) } ) ∧ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ∈ ( ( nei ‘ 𝐽 ) ‘ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( { ( 1st ‘ 𝑟 ) } × { ( 2nd ‘ 𝑟 ) } ) ) ) |
| 36 | 22 22 29 33 35 | syl22anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( { ( 1st ‘ 𝑟 ) } × { ( 2nd ‘ 𝑟 ) } ) ) ) |
| 37 | fvex | ⊢ ( 1st ‘ 𝑟 ) ∈ V | |
| 38 | fvex | ⊢ ( 2nd ‘ 𝑟 ) ∈ V | |
| 39 | 37 38 | xpsn | ⊢ ( { ( 1st ‘ 𝑟 ) } × { ( 2nd ‘ 𝑟 ) } ) = { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } |
| 40 | 39 | fveq2i | ⊢ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( { ( 1st ‘ 𝑟 ) } × { ( 2nd ‘ 𝑟 ) } ) ) = ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } ) |
| 41 | 36 40 | eleqtrdi | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } ) ) |
| 42 | 24 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) |
| 43 | xpss | ⊢ ( 𝑋 × 𝑋 ) ⊆ ( V × V ) | |
| 44 | sstr | ⊢ ( ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ⊆ ( V × V ) ) → 𝑀 ⊆ ( V × V ) ) | |
| 45 | 43 44 | mpan2 | ⊢ ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) → 𝑀 ⊆ ( V × V ) ) |
| 46 | df-rel | ⊢ ( Rel 𝑀 ↔ 𝑀 ⊆ ( V × V ) ) | |
| 47 | 45 46 | sylibr | ⊢ ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) → Rel 𝑀 ) |
| 48 | 42 47 | syl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → Rel 𝑀 ) |
| 49 | 1st2nd | ⊢ ( ( Rel 𝑀 ∧ 𝑟 ∈ 𝑀 ) → 𝑟 = 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 ) | |
| 50 | 48 49 | sylancom | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → 𝑟 = 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 ) |
| 51 | 50 | sneqd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → { 𝑟 } = { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } ) |
| 52 | 51 | fveq2d | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) = ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 〈 ( 1st ‘ 𝑟 ) , ( 2nd ‘ 𝑟 ) 〉 } ) ) |
| 53 | 41 52 | eleqtrrd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
| 54 | relxp | ⊢ Rel ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) | |
| 55 | 54 | a1i | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → Rel ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) |
| 56 | 1st2nd | ⊢ ( ( Rel ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 57 | 55 56 | sylancom | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 58 | simpll2 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ) | |
| 59 | 58 | simprd | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ◡ 𝑉 = 𝑉 ) |
| 60 | simpll1 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 61 | 58 | simpld | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑉 ∈ 𝑈 ) |
| 62 | ustrel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → Rel 𝑉 ) | |
| 63 | 60 61 62 | syl2anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → Rel 𝑉 ) |
| 64 | xp1st | ⊢ ( 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) → ( 1st ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ) | |
| 65 | 64 | adantl | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ) |
| 66 | elrelimasn | ⊢ ( Rel 𝑉 → ( ( 1st ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ↔ ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) ) | |
| 67 | 66 | biimpa | ⊢ ( ( Rel 𝑉 ∧ ( 1st ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) ) → ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) |
| 68 | 63 65 67 | syl2anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) |
| 69 | fvex | ⊢ ( 1st ‘ 𝑧 ) ∈ V | |
| 70 | 37 69 | brcnv | ⊢ ( ( 1st ‘ 𝑟 ) ◡ 𝑉 ( 1st ‘ 𝑧 ) ↔ ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ) |
| 71 | breq | ⊢ ( ◡ 𝑉 = 𝑉 → ( ( 1st ‘ 𝑟 ) ◡ 𝑉 ( 1st ‘ 𝑧 ) ↔ ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) ) | |
| 72 | 70 71 | bitr3id | ⊢ ( ◡ 𝑉 = 𝑉 → ( ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ↔ ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) ) |
| 73 | 72 | biimpar | ⊢ ( ( ◡ 𝑉 = 𝑉 ∧ ( 1st ‘ 𝑟 ) 𝑉 ( 1st ‘ 𝑧 ) ) → ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ) |
| 74 | 59 68 73 | syl2anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ) |
| 75 | simpll3 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 76 | simplr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑟 ∈ 𝑀 ) | |
| 77 | 1st2ndbr | ⊢ ( ( Rel 𝑀 ∧ 𝑟 ∈ 𝑀 ) → ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) | |
| 78 | 47 77 | sylan | ⊢ ( ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑟 ∈ 𝑀 ) → ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) |
| 79 | 75 76 78 | syl2anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) |
| 80 | xp2nd | ⊢ ( 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) → ( 2nd ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) | |
| 81 | 80 | adantl | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) |
| 82 | elrelimasn | ⊢ ( Rel 𝑉 → ( ( 2nd ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ↔ ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) ) | |
| 83 | 82 | biimpa | ⊢ ( ( Rel 𝑉 ∧ ( 2nd ‘ 𝑧 ) ∈ ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) → ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) |
| 84 | 63 81 83 | syl2anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) |
| 85 | 69 38 37 | 3pm3.2i | ⊢ ( ( 1st ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑟 ) ∈ V ∧ ( 1st ‘ 𝑟 ) ∈ V ) |
| 86 | brcogw | ⊢ ( ( ( ( 1st ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑟 ) ∈ V ∧ ( 1st ‘ 𝑟 ) ∈ V ) ∧ ( ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ∧ ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) ) → ( 1st ‘ 𝑧 ) ( 𝑀 ∘ 𝑉 ) ( 2nd ‘ 𝑟 ) ) | |
| 87 | 85 86 | mpan | ⊢ ( ( ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ∧ ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) → ( 1st ‘ 𝑧 ) ( 𝑀 ∘ 𝑉 ) ( 2nd ‘ 𝑟 ) ) |
| 88 | fvex | ⊢ ( 2nd ‘ 𝑧 ) ∈ V | |
| 89 | 69 88 38 | 3pm3.2i | ⊢ ( ( 1st ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑟 ) ∈ V ) |
| 90 | brcogw | ⊢ ( ( ( ( 1st ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑧 ) ∈ V ∧ ( 2nd ‘ 𝑟 ) ∈ V ) ∧ ( ( 1st ‘ 𝑧 ) ( 𝑀 ∘ 𝑉 ) ( 2nd ‘ 𝑟 ) ∧ ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) ) → ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ) | |
| 91 | 89 90 | mpan | ⊢ ( ( ( 1st ‘ 𝑧 ) ( 𝑀 ∘ 𝑉 ) ( 2nd ‘ 𝑟 ) ∧ ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) → ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ) |
| 92 | 87 91 | sylan | ⊢ ( ( ( ( 1st ‘ 𝑧 ) 𝑉 ( 1st ‘ 𝑟 ) ∧ ( 1st ‘ 𝑟 ) 𝑀 ( 2nd ‘ 𝑟 ) ) ∧ ( 2nd ‘ 𝑟 ) 𝑉 ( 2nd ‘ 𝑧 ) ) → ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ) |
| 93 | 74 79 84 92 | syl21anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ) |
| 94 | df-br | ⊢ ( ( 1st ‘ 𝑧 ) ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ( 2nd ‘ 𝑧 ) ↔ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) | |
| 95 | 93 94 | sylib | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∈ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
| 96 | 57 95 | eqeltrd | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) ∧ 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ) → 𝑧 ∈ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
| 97 | 96 | ex | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑧 ∈ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) → 𝑧 ∈ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) ) |
| 98 | 97 | ssrdv | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ⊆ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
| 99 | simp1 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 100 | simp2l | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑉 ∈ 𝑈 ) | |
| 101 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 102 | 99 100 101 | syl2anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑉 ⊆ ( 𝑋 × 𝑋 ) ) |
| 103 | coss1 | ⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ) | |
| 104 | 102 103 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ) |
| 105 | coss1 | ⊢ ( 𝑀 ⊆ ( 𝑋 × 𝑋 ) → ( 𝑀 ∘ 𝑉 ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ) | |
| 106 | 24 105 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑀 ∘ 𝑉 ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ) |
| 107 | coss2 | ⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑋 × 𝑋 ) ) ) | |
| 108 | xpcoid | ⊢ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑋 × 𝑋 ) ) = ( 𝑋 × 𝑋 ) | |
| 109 | 107 108 | sseqtrdi | ⊢ ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 110 | 102 109 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( ( 𝑋 × 𝑋 ) ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 111 | 106 110 | sstrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑀 ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 112 | coss2 | ⊢ ( ( 𝑀 ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( ( 𝑋 × 𝑋 ) ∘ ( 𝑋 × 𝑋 ) ) ) | |
| 113 | 112 108 | sseqtrdi | ⊢ ( ( 𝑀 ∘ 𝑉 ) ⊆ ( 𝑋 × 𝑋 ) → ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 114 | 111 113 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( ( 𝑋 × 𝑋 ) ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 115 | 104 114 | sstrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 116 | utopbas | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ ( unifTop ‘ 𝑈 ) ) | |
| 117 | 1 | unieqi | ⊢ ∪ 𝐽 = ∪ ( unifTop ‘ 𝑈 ) |
| 118 | 116 117 | eqtr4di | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 119 | 118 | sqxpeqd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = ( ∪ 𝐽 × ∪ 𝐽 ) ) |
| 120 | 34 34 | txuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐽 ∈ Top ) → ( ∪ 𝐽 × ∪ 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
| 121 | 3 3 120 | syl2anc | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ∪ 𝐽 × ∪ 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
| 122 | 119 121 | eqtrd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
| 123 | 122 | 3ad2ant1 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑋 × 𝑋 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
| 124 | 115 123 | sseqtrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
| 125 | 124 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
| 126 | eqid | ⊢ ∪ ( 𝐽 ×t 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) | |
| 127 | 126 | ssnei2 | ⊢ ( ( ( ( 𝐽 ×t 𝐽 ) ∈ Top ∧ ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) ∧ ( ( ( 𝑉 “ { ( 1st ‘ 𝑟 ) } ) × ( 𝑉 “ { ( 2nd ‘ 𝑟 ) } ) ) ⊆ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∧ ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
| 128 | 20 53 98 125 127 | syl22anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑟 ∈ 𝑀 ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
| 129 | 128 | ralrimiva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ∀ 𝑟 ∈ 𝑀 ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
| 130 | 129 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → ∀ 𝑟 ∈ 𝑀 ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) |
| 131 | 6 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
| 132 | 24 123 | sseqtrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → 𝑀 ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
| 133 | 132 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → 𝑀 ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
| 134 | simpr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → 𝑀 ≠ ∅ ) | |
| 135 | 126 | neips | ⊢ ( ( ( 𝐽 ×t 𝐽 ) ∈ Top ∧ 𝑀 ⊆ ∪ ( 𝐽 ×t 𝐽 ) ∧ 𝑀 ≠ ∅ ) → ( ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ↔ ∀ 𝑟 ∈ 𝑀 ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) ) |
| 136 | 131 133 134 135 | syl3anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → ( ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ↔ ∀ 𝑟 ∈ 𝑀 ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ { 𝑟 } ) ) ) |
| 137 | 130 136 | mpbird | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) ∧ 𝑀 ≠ ∅ ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ) |
| 138 | 19 137 | pm2.61dane | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝑉 ∈ 𝑈 ∧ ◡ 𝑉 = 𝑉 ) ∧ 𝑀 ⊆ ( 𝑋 × 𝑋 ) ) → ( 𝑉 ∘ ( 𝑀 ∘ 𝑉 ) ) ∈ ( ( nei ‘ ( 𝐽 ×t 𝐽 ) ) ‘ 𝑀 ) ) |