This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset M of X containing a neighborhood N of a set S is a neighborhood of this set. Generalization to subsets of Property V_i of BourbakiTop1 p. I.3. (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neips.1 | |- X = U. J |
|
| Assertion | ssnei2 | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( N C_ M /\ M C_ X ) ) -> M e. ( ( nei ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neips.1 | |- X = U. J |
|
| 2 | simprr | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( N C_ M /\ M C_ X ) ) -> M C_ X ) |
|
| 3 | neii2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
|
| 4 | sstr2 | |- ( g C_ N -> ( N C_ M -> g C_ M ) ) |
|
| 5 | 4 | com12 | |- ( N C_ M -> ( g C_ N -> g C_ M ) ) |
| 6 | 5 | anim2d | |- ( N C_ M -> ( ( S C_ g /\ g C_ N ) -> ( S C_ g /\ g C_ M ) ) ) |
| 7 | 6 | reximdv | |- ( N C_ M -> ( E. g e. J ( S C_ g /\ g C_ N ) -> E. g e. J ( S C_ g /\ g C_ M ) ) ) |
| 8 | 3 7 | mpan9 | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ N C_ M ) -> E. g e. J ( S C_ g /\ g C_ M ) ) |
| 9 | 8 | adantrr | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( N C_ M /\ M C_ X ) ) -> E. g e. J ( S C_ g /\ g C_ M ) ) |
| 10 | 1 | neiss2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ X ) |
| 11 | 1 | isnei | |- ( ( J e. Top /\ S C_ X ) -> ( M e. ( ( nei ` J ) ` S ) <-> ( M C_ X /\ E. g e. J ( S C_ g /\ g C_ M ) ) ) ) |
| 12 | 10 11 | syldan | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> ( M e. ( ( nei ` J ) ` S ) <-> ( M C_ X /\ E. g e. J ( S C_ g /\ g C_ M ) ) ) ) |
| 13 | 12 | adantr | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( N C_ M /\ M C_ X ) ) -> ( M e. ( ( nei ` J ) ` S ) <-> ( M C_ X /\ E. g e. J ( S C_ g /\ g C_ M ) ) ) ) |
| 14 | 2 9 13 | mpbir2and | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( N C_ M /\ M C_ X ) ) -> M e. ( ( nei ` J ) ` S ) ) |