This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utoptop.1 | |- J = ( unifTop ` U ) |
|
| Assertion | utop3cls | |- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ ( V o. ( M o. V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | |- J = ( unifTop ` U ) |
|
| 2 | relxp | |- Rel ( X X. X ) |
|
| 3 | utoptop | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. Top ) |
|
| 4 | 1 3 | eqeltrid | |- ( U e. ( UnifOn ` X ) -> J e. Top ) |
| 5 | txtop | |- ( ( J e. Top /\ J e. Top ) -> ( J tX J ) e. Top ) |
|
| 6 | 4 4 5 | syl2anc | |- ( U e. ( UnifOn ` X ) -> ( J tX J ) e. Top ) |
| 7 | 6 | ad3antrrr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( J tX J ) e. Top ) |
| 8 | simpllr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> M C_ ( X X. X ) ) |
|
| 9 | utoptopon | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. ( TopOn ` X ) ) |
|
| 10 | 1 9 | eqeltrid | |- ( U e. ( UnifOn ` X ) -> J e. ( TopOn ` X ) ) |
| 11 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 12 | 10 11 | syl | |- ( U e. ( UnifOn ` X ) -> X = U. J ) |
| 13 | 12 | sqxpeqd | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) = ( U. J X. U. J ) ) |
| 14 | eqid | |- U. J = U. J |
|
| 15 | 14 14 | txuni | |- ( ( J e. Top /\ J e. Top ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
| 16 | 4 4 15 | syl2anc | |- ( U e. ( UnifOn ` X ) -> ( U. J X. U. J ) = U. ( J tX J ) ) |
| 17 | 13 16 | eqtrd | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) = U. ( J tX J ) ) |
| 18 | 17 | ad3antrrr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( X X. X ) = U. ( J tX J ) ) |
| 19 | 8 18 | sseqtrd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> M C_ U. ( J tX J ) ) |
| 20 | eqid | |- U. ( J tX J ) = U. ( J tX J ) |
|
| 21 | 20 | clsss3 | |- ( ( ( J tX J ) e. Top /\ M C_ U. ( J tX J ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ U. ( J tX J ) ) |
| 22 | 7 19 21 | syl2anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ U. ( J tX J ) ) |
| 23 | 22 18 | sseqtrrd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ ( X X. X ) ) |
| 24 | simpr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> z e. ( ( cls ` ( J tX J ) ) ` M ) ) |
|
| 25 | 23 24 | sseldd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> z e. ( X X. X ) ) |
| 26 | 1st2nd | |- ( ( Rel ( X X. X ) /\ z e. ( X X. X ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 27 | 2 25 26 | sylancr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 28 | simp-4l | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> U e. ( UnifOn ` X ) ) |
|
| 29 | simpr1l | |- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( ( V e. U /\ `' V = V ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) ) -> V e. U ) |
|
| 30 | 29 | 3anassrs | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> V e. U ) |
| 31 | ustrel | |- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> Rel V ) |
|
| 32 | 28 30 31 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> Rel V ) |
| 33 | simpr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) |
|
| 34 | elin | |- ( r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) <-> ( r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) /\ r e. M ) ) |
|
| 35 | 33 34 | sylib | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) /\ r e. M ) ) |
| 36 | 35 | simpld | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) ) |
| 37 | xp1st | |- ( r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) -> ( 1st ` r ) e. ( V " { ( 1st ` z ) } ) ) |
|
| 38 | 36 37 | syl | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 1st ` r ) e. ( V " { ( 1st ` z ) } ) ) |
| 39 | elrelimasn | |- ( Rel V -> ( ( 1st ` r ) e. ( V " { ( 1st ` z ) } ) <-> ( 1st ` z ) V ( 1st ` r ) ) ) |
|
| 40 | 39 | biimpa | |- ( ( Rel V /\ ( 1st ` r ) e. ( V " { ( 1st ` z ) } ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
| 41 | 32 38 40 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 1st ` z ) V ( 1st ` r ) ) |
| 42 | simp-4r | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> M C_ ( X X. X ) ) |
|
| 43 | xpss | |- ( X X. X ) C_ ( _V X. _V ) |
|
| 44 | 42 43 | sstrdi | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> M C_ ( _V X. _V ) ) |
| 45 | df-rel | |- ( Rel M <-> M C_ ( _V X. _V ) ) |
|
| 46 | 44 45 | sylibr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> Rel M ) |
| 47 | 35 | simprd | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> r e. M ) |
| 48 | 1st2ndbr | |- ( ( Rel M /\ r e. M ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
|
| 49 | 46 47 48 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 1st ` r ) M ( 2nd ` r ) ) |
| 50 | xp2nd | |- ( r e. ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) -> ( 2nd ` r ) e. ( V " { ( 2nd ` z ) } ) ) |
|
| 51 | 36 50 | syl | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 2nd ` r ) e. ( V " { ( 2nd ` z ) } ) ) |
| 52 | elrelimasn | |- ( Rel V -> ( ( 2nd ` r ) e. ( V " { ( 2nd ` z ) } ) <-> ( 2nd ` z ) V ( 2nd ` r ) ) ) |
|
| 53 | 52 | biimpa | |- ( ( Rel V /\ ( 2nd ` r ) e. ( V " { ( 2nd ` z ) } ) ) -> ( 2nd ` z ) V ( 2nd ` r ) ) |
| 54 | 32 51 53 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 2nd ` z ) V ( 2nd ` r ) ) |
| 55 | simpr1r | |- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( ( V e. U /\ `' V = V ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) ) -> `' V = V ) |
|
| 56 | 55 | 3anassrs | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> `' V = V ) |
| 57 | breq | |- ( `' V = V -> ( ( 2nd ` r ) `' V ( 2nd ` z ) <-> ( 2nd ` r ) V ( 2nd ` z ) ) ) |
|
| 58 | fvex | |- ( 2nd ` r ) e. _V |
|
| 59 | fvex | |- ( 2nd ` z ) e. _V |
|
| 60 | 58 59 | brcnv | |- ( ( 2nd ` r ) `' V ( 2nd ` z ) <-> ( 2nd ` z ) V ( 2nd ` r ) ) |
| 61 | 57 60 | bitr3di | |- ( `' V = V -> ( ( 2nd ` r ) V ( 2nd ` z ) <-> ( 2nd ` z ) V ( 2nd ` r ) ) ) |
| 62 | 56 61 | syl | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( ( 2nd ` r ) V ( 2nd ` z ) <-> ( 2nd ` z ) V ( 2nd ` r ) ) ) |
| 63 | 54 62 | mpbird | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 2nd ` r ) V ( 2nd ` z ) ) |
| 64 | fvex | |- ( 1st ` z ) e. _V |
|
| 65 | fvex | |- ( 1st ` r ) e. _V |
|
| 66 | brcogw | |- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) /\ ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
|
| 67 | 66 | ex | |- ( ( ( 1st ` z ) e. _V /\ ( 2nd ` r ) e. _V /\ ( 1st ` r ) e. _V ) -> ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) ) |
| 68 | 64 58 65 67 | mp3an | |- ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) -> ( 1st ` z ) ( M o. V ) ( 2nd ` r ) ) |
| 69 | brcogw | |- ( ( ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) /\ ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
|
| 70 | 69 | ex | |- ( ( ( 1st ` z ) e. _V /\ ( 2nd ` z ) e. _V /\ ( 2nd ` r ) e. _V ) -> ( ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) ) |
| 71 | 64 59 58 70 | mp3an | |- ( ( ( 1st ` z ) ( M o. V ) ( 2nd ` r ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 72 | 68 71 | sylan | |- ( ( ( ( 1st ` z ) V ( 1st ` r ) /\ ( 1st ` r ) M ( 2nd ` r ) ) /\ ( 2nd ` r ) V ( 2nd ` z ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 73 | 41 49 63 72 | syl21anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) /\ r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 74 | 73 | ralrimiva | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> A. r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 75 | simplll | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> U e. ( UnifOn ` X ) ) |
|
| 76 | simplrl | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> V e. U ) |
|
| 77 | 4 | 3ad2ant1 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> J e. Top ) |
| 78 | xp1st | |- ( z e. ( X X. X ) -> ( 1st ` z ) e. X ) |
|
| 79 | 1 | utopsnnei | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 1st ` z ) e. X ) -> ( V " { ( 1st ` z ) } ) e. ( ( nei ` J ) ` { ( 1st ` z ) } ) ) |
| 80 | 78 79 | syl3an3 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( V " { ( 1st ` z ) } ) e. ( ( nei ` J ) ` { ( 1st ` z ) } ) ) |
| 81 | xp2nd | |- ( z e. ( X X. X ) -> ( 2nd ` z ) e. X ) |
|
| 82 | 1 | utopsnnei | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ ( 2nd ` z ) e. X ) -> ( V " { ( 2nd ` z ) } ) e. ( ( nei ` J ) ` { ( 2nd ` z ) } ) ) |
| 83 | 81 82 | syl3an3 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( V " { ( 2nd ` z ) } ) e. ( ( nei ` J ) ` { ( 2nd ` z ) } ) ) |
| 84 | 14 14 | neitx | |- ( ( ( J e. Top /\ J e. Top ) /\ ( ( V " { ( 1st ` z ) } ) e. ( ( nei ` J ) ` { ( 1st ` z ) } ) /\ ( V " { ( 2nd ` z ) } ) e. ( ( nei ` J ) ` { ( 2nd ` z ) } ) ) ) -> ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) ) |
| 85 | 77 77 80 83 84 | syl22anc | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) ) |
| 86 | 1st2nd2 | |- ( z e. ( X X. X ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 87 | 86 | sneqd | |- ( z e. ( X X. X ) -> { z } = { <. ( 1st ` z ) , ( 2nd ` z ) >. } ) |
| 88 | 64 59 | xpsn | |- ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) = { <. ( 1st ` z ) , ( 2nd ` z ) >. } |
| 89 | 87 88 | eqtr4di | |- ( z e. ( X X. X ) -> { z } = ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) |
| 90 | 89 | fveq2d | |- ( z e. ( X X. X ) -> ( ( nei ` ( J tX J ) ) ` { z } ) = ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) ) |
| 91 | 90 | 3ad2ant3 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( ( nei ` ( J tX J ) ) ` { z } ) = ( ( nei ` ( J tX J ) ) ` ( { ( 1st ` z ) } X. { ( 2nd ` z ) } ) ) ) |
| 92 | 85 91 | eleqtrrd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ z e. ( X X. X ) ) -> ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { z } ) ) |
| 93 | 75 76 25 92 | syl3anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { z } ) ) |
| 94 | 20 | neindisj | |- ( ( ( ( J tX J ) e. Top /\ M C_ U. ( J tX J ) ) /\ ( z e. ( ( cls ` ( J tX J ) ) ` M ) /\ ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) e. ( ( nei ` ( J tX J ) ) ` { z } ) ) ) -> ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) =/= (/) ) |
| 95 | 7 19 24 93 94 | syl22anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) =/= (/) ) |
| 96 | r19.3rzv | |- ( ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) =/= (/) -> ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> A. r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) ) |
|
| 97 | 95 96 | syl | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> A. r e. ( ( ( V " { ( 1st ` z ) } ) X. ( V " { ( 2nd ` z ) } ) ) i^i M ) ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) ) |
| 98 | 74 97 | mpbird | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) ) |
| 99 | df-br | |- ( ( 1st ` z ) ( V o. ( M o. V ) ) ( 2nd ` z ) <-> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
|
| 100 | 98 99 | sylib | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> <. ( 1st ` z ) , ( 2nd ` z ) >. e. ( V o. ( M o. V ) ) ) |
| 101 | 27 100 | eqeltrd | |- ( ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) /\ z e. ( ( cls ` ( J tX J ) ) ` M ) ) -> z e. ( V o. ( M o. V ) ) ) |
| 102 | 101 | ex | |- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) -> ( z e. ( ( cls ` ( J tX J ) ) ` M ) -> z e. ( V o. ( M o. V ) ) ) ) |
| 103 | 102 | ssrdv | |- ( ( ( U e. ( UnifOn ` X ) /\ M C_ ( X X. X ) ) /\ ( V e. U /\ `' V = V ) ) -> ( ( cls ` ( J tX J ) ) ` M ) C_ ( V o. ( M o. V ) ) ) |