This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpcoid | |- ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | co01 | |- ( (/) o. (/) ) = (/) |
|
| 2 | id | |- ( A = (/) -> A = (/) ) |
|
| 3 | 2 | sqxpeqd | |- ( A = (/) -> ( A X. A ) = ( (/) X. (/) ) ) |
| 4 | 0xp | |- ( (/) X. (/) ) = (/) |
|
| 5 | 3 4 | eqtrdi | |- ( A = (/) -> ( A X. A ) = (/) ) |
| 6 | 5 5 | coeq12d | |- ( A = (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( (/) o. (/) ) ) |
| 7 | 1 6 5 | 3eqtr4a | |- ( A = (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) ) |
| 8 | xpco | |- ( A =/= (/) -> ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) ) |
|
| 9 | 7 8 | pm2.61ine | |- ( ( A X. A ) o. ( A X. A ) ) = ( A X. A ) |