This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unxpwdom . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unxpwdom2 | |- ( ( A X. A ) ~~ ( B u. C ) -> ( A ~<_* B \/ A ~<_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | |- ( ( A X. A ) ~~ ( B u. C ) -> ( B u. C ) ~~ ( A X. A ) ) |
|
| 2 | bren | |- ( ( B u. C ) ~~ ( A X. A ) <-> E. f f : ( B u. C ) -1-1-onto-> ( A X. A ) ) |
|
| 3 | ssdif0 | |- ( A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) <-> ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) = (/) ) |
|
| 4 | dmxpid | |- dom ( A X. A ) = A |
|
| 5 | f1ofo | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> f : ( B u. C ) -onto-> ( A X. A ) ) |
|
| 6 | forn | |- ( f : ( B u. C ) -onto-> ( A X. A ) -> ran f = ( A X. A ) ) |
|
| 7 | 5 6 | syl | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ran f = ( A X. A ) ) |
| 8 | vex | |- f e. _V |
|
| 9 | 8 | rnex | |- ran f e. _V |
| 10 | 7 9 | eqeltrrdi | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( A X. A ) e. _V ) |
| 11 | 10 | dmexd | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> dom ( A X. A ) e. _V ) |
| 12 | 4 11 | eqeltrrid | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> A e. _V ) |
| 13 | imassrn | |- ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) C_ ran ( ( 1st |` ( A X. A ) ) o. f ) |
|
| 14 | f1stres | |- ( 1st |` ( A X. A ) ) : ( A X. A ) --> A |
|
| 15 | f1of | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> f : ( B u. C ) --> ( A X. A ) ) |
|
| 16 | fco | |- ( ( ( 1st |` ( A X. A ) ) : ( A X. A ) --> A /\ f : ( B u. C ) --> ( A X. A ) ) -> ( ( 1st |` ( A X. A ) ) o. f ) : ( B u. C ) --> A ) |
|
| 17 | 14 15 16 | sylancr | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( ( 1st |` ( A X. A ) ) o. f ) : ( B u. C ) --> A ) |
| 18 | 17 | frnd | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ran ( ( 1st |` ( A X. A ) ) o. f ) C_ A ) |
| 19 | 13 18 | sstrid | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) C_ A ) |
| 20 | 12 19 | ssexd | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) e. _V ) |
| 21 | 20 | adantr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) e. _V ) |
| 22 | simpr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
|
| 23 | ssdomg | |- ( ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) e. _V -> ( A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) -> A ~<_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) |
|
| 24 | 21 22 23 | sylc | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> A ~<_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
| 25 | domwdom | |- ( A ~<_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) -> A ~<_* ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
|
| 26 | 24 25 | syl | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> A ~<_* ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
| 27 | 17 | ffund | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> Fun ( ( 1st |` ( A X. A ) ) o. f ) ) |
| 28 | ssun1 | |- B C_ ( B u. C ) |
|
| 29 | f1odm | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> dom f = ( B u. C ) ) |
|
| 30 | 8 | dmex | |- dom f e. _V |
| 31 | 29 30 | eqeltrrdi | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( B u. C ) e. _V ) |
| 32 | ssexg | |- ( ( B C_ ( B u. C ) /\ ( B u. C ) e. _V ) -> B e. _V ) |
|
| 33 | 28 31 32 | sylancr | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> B e. _V ) |
| 34 | wdomima2g | |- ( ( Fun ( ( 1st |` ( A X. A ) ) o. f ) /\ B e. _V /\ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) e. _V ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ~<_* B ) |
|
| 35 | 27 33 20 34 | syl3anc | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ~<_* B ) |
| 36 | 35 | adantr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ~<_* B ) |
| 37 | wdomtr | |- ( ( A ~<_* ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) /\ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ~<_* B ) -> A ~<_* B ) |
|
| 38 | 26 36 37 | syl2anc | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> A ~<_* B ) |
| 39 | 38 | orcd | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> ( A ~<_* B \/ A ~<_ C ) ) |
| 40 | 39 | ex | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( A C_ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) -> ( A ~<_* B \/ A ~<_ C ) ) ) |
| 41 | 3 40 | biimtrrid | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) = (/) -> ( A ~<_* B \/ A ~<_ C ) ) ) |
| 42 | n0 | |- ( ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) =/= (/) <-> E. x x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) |
|
| 43 | ssun2 | |- C C_ ( B u. C ) |
|
| 44 | ssexg | |- ( ( C C_ ( B u. C ) /\ ( B u. C ) e. _V ) -> C e. _V ) |
|
| 45 | 43 31 44 | sylancr | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> C e. _V ) |
| 46 | 45 | adantr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> C e. _V ) |
| 47 | f1ofn | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> f Fn ( B u. C ) ) |
|
| 48 | elpreima | |- ( f Fn ( B u. C ) -> ( y e. ( `' f " ( { x } X. A ) ) <-> ( y e. ( B u. C ) /\ ( f ` y ) e. ( { x } X. A ) ) ) ) |
|
| 49 | 47 48 | syl | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( y e. ( `' f " ( { x } X. A ) ) <-> ( y e. ( B u. C ) /\ ( f ` y ) e. ( { x } X. A ) ) ) ) |
| 50 | 49 | adantr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( y e. ( `' f " ( { x } X. A ) ) <-> ( y e. ( B u. C ) /\ ( f ` y ) e. ( { x } X. A ) ) ) ) |
| 51 | elun | |- ( y e. ( B u. C ) <-> ( y e. B \/ y e. C ) ) |
|
| 52 | df-or | |- ( ( y e. B \/ y e. C ) <-> ( -. y e. B -> y e. C ) ) |
|
| 53 | 51 52 | bitri | |- ( y e. ( B u. C ) <-> ( -. y e. B -> y e. C ) ) |
| 54 | eldifn | |- ( x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> -. x e. ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
|
| 55 | 54 | ad2antlr | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( f ` y ) e. ( { x } X. A ) ) -> -. x e. ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
| 56 | 15 | ad2antrr | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> f : ( B u. C ) --> ( A X. A ) ) |
| 57 | simprr | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> y e. B ) |
|
| 58 | 28 57 | sselid | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> y e. ( B u. C ) ) |
| 59 | fvco3 | |- ( ( f : ( B u. C ) --> ( A X. A ) /\ y e. ( B u. C ) ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) ` y ) = ( ( 1st |` ( A X. A ) ) ` ( f ` y ) ) ) |
|
| 60 | 56 58 59 | syl2anc | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) ` y ) = ( ( 1st |` ( A X. A ) ) ` ( f ` y ) ) ) |
| 61 | eldifi | |- ( x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> x e. A ) |
|
| 62 | 61 | adantl | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> x e. A ) |
| 63 | 62 | snssd | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> { x } C_ A ) |
| 64 | xpss1 | |- ( { x } C_ A -> ( { x } X. A ) C_ ( A X. A ) ) |
|
| 65 | 63 64 | syl | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( { x } X. A ) C_ ( A X. A ) ) |
| 66 | 65 | adantr | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( { x } X. A ) C_ ( A X. A ) ) |
| 67 | simprl | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( f ` y ) e. ( { x } X. A ) ) |
|
| 68 | 66 67 | sseldd | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( f ` y ) e. ( A X. A ) ) |
| 69 | 68 | fvresd | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( ( 1st |` ( A X. A ) ) ` ( f ` y ) ) = ( 1st ` ( f ` y ) ) ) |
| 70 | xp1st | |- ( ( f ` y ) e. ( { x } X. A ) -> ( 1st ` ( f ` y ) ) e. { x } ) |
|
| 71 | 67 70 | syl | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( 1st ` ( f ` y ) ) e. { x } ) |
| 72 | 69 71 | eqeltrd | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( ( 1st |` ( A X. A ) ) ` ( f ` y ) ) e. { x } ) |
| 73 | elsni | |- ( ( ( 1st |` ( A X. A ) ) ` ( f ` y ) ) e. { x } -> ( ( 1st |` ( A X. A ) ) ` ( f ` y ) ) = x ) |
|
| 74 | 72 73 | syl | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( ( 1st |` ( A X. A ) ) ` ( f ` y ) ) = x ) |
| 75 | 60 74 | eqtrd | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) ` y ) = x ) |
| 76 | 17 | ffnd | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( ( 1st |` ( A X. A ) ) o. f ) Fn ( B u. C ) ) |
| 77 | 76 | ad2antrr | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( ( 1st |` ( A X. A ) ) o. f ) Fn ( B u. C ) ) |
| 78 | 28 | a1i | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> B C_ ( B u. C ) ) |
| 79 | fnfvima | |- ( ( ( ( 1st |` ( A X. A ) ) o. f ) Fn ( B u. C ) /\ B C_ ( B u. C ) /\ y e. B ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) ` y ) e. ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
|
| 80 | 77 78 57 79 | syl3anc | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> ( ( ( 1st |` ( A X. A ) ) o. f ) ` y ) e. ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
| 81 | 75 80 | eqeltrrd | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( ( f ` y ) e. ( { x } X. A ) /\ y e. B ) ) -> x e. ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) |
| 82 | 81 | expr | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( f ` y ) e. ( { x } X. A ) ) -> ( y e. B -> x e. ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) |
| 83 | 55 82 | mtod | |- ( ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) /\ ( f ` y ) e. ( { x } X. A ) ) -> -. y e. B ) |
| 84 | 83 | ex | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( ( f ` y ) e. ( { x } X. A ) -> -. y e. B ) ) |
| 85 | 84 | imim1d | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( ( -. y e. B -> y e. C ) -> ( ( f ` y ) e. ( { x } X. A ) -> y e. C ) ) ) |
| 86 | 53 85 | biimtrid | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( y e. ( B u. C ) -> ( ( f ` y ) e. ( { x } X. A ) -> y e. C ) ) ) |
| 87 | 86 | impd | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( ( y e. ( B u. C ) /\ ( f ` y ) e. ( { x } X. A ) ) -> y e. C ) ) |
| 88 | 50 87 | sylbid | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( y e. ( `' f " ( { x } X. A ) ) -> y e. C ) ) |
| 89 | 88 | ssrdv | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( `' f " ( { x } X. A ) ) C_ C ) |
| 90 | ssdomg | |- ( C e. _V -> ( ( `' f " ( { x } X. A ) ) C_ C -> ( `' f " ( { x } X. A ) ) ~<_ C ) ) |
|
| 91 | 46 89 90 | sylc | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( `' f " ( { x } X. A ) ) ~<_ C ) |
| 92 | f1ocnv | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> `' f : ( A X. A ) -1-1-onto-> ( B u. C ) ) |
|
| 93 | f1of1 | |- ( `' f : ( A X. A ) -1-1-onto-> ( B u. C ) -> `' f : ( A X. A ) -1-1-> ( B u. C ) ) |
|
| 94 | 92 93 | syl | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> `' f : ( A X. A ) -1-1-> ( B u. C ) ) |
| 95 | 94 | adantr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> `' f : ( A X. A ) -1-1-> ( B u. C ) ) |
| 96 | 31 | adantr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( B u. C ) e. _V ) |
| 97 | vsnex | |- { x } e. _V |
|
| 98 | 12 | adantr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> A e. _V ) |
| 99 | xpexg | |- ( ( { x } e. _V /\ A e. _V ) -> ( { x } X. A ) e. _V ) |
|
| 100 | 97 98 99 | sylancr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( { x } X. A ) e. _V ) |
| 101 | f1imaen2g | |- ( ( ( `' f : ( A X. A ) -1-1-> ( B u. C ) /\ ( B u. C ) e. _V ) /\ ( ( { x } X. A ) C_ ( A X. A ) /\ ( { x } X. A ) e. _V ) ) -> ( `' f " ( { x } X. A ) ) ~~ ( { x } X. A ) ) |
|
| 102 | 95 96 65 100 101 | syl22anc | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( `' f " ( { x } X. A ) ) ~~ ( { x } X. A ) ) |
| 103 | vex | |- x e. _V |
|
| 104 | xpsnen2g | |- ( ( x e. _V /\ A e. _V ) -> ( { x } X. A ) ~~ A ) |
|
| 105 | 103 98 104 | sylancr | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( { x } X. A ) ~~ A ) |
| 106 | entr | |- ( ( ( `' f " ( { x } X. A ) ) ~~ ( { x } X. A ) /\ ( { x } X. A ) ~~ A ) -> ( `' f " ( { x } X. A ) ) ~~ A ) |
|
| 107 | 102 105 106 | syl2anc | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( `' f " ( { x } X. A ) ) ~~ A ) |
| 108 | domen1 | |- ( ( `' f " ( { x } X. A ) ) ~~ A -> ( ( `' f " ( { x } X. A ) ) ~<_ C <-> A ~<_ C ) ) |
|
| 109 | 107 108 | syl | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( ( `' f " ( { x } X. A ) ) ~<_ C <-> A ~<_ C ) ) |
| 110 | 91 109 | mpbid | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> A ~<_ C ) |
| 111 | 110 | olcd | |- ( ( f : ( B u. C ) -1-1-onto-> ( A X. A ) /\ x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) ) -> ( A ~<_* B \/ A ~<_ C ) ) |
| 112 | 111 | ex | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> ( A ~<_* B \/ A ~<_ C ) ) ) |
| 113 | 112 | exlimdv | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( E. x x e. ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) -> ( A ~<_* B \/ A ~<_ C ) ) ) |
| 114 | 42 113 | biimtrid | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( ( A \ ( ( ( 1st |` ( A X. A ) ) o. f ) " B ) ) =/= (/) -> ( A ~<_* B \/ A ~<_ C ) ) ) |
| 115 | 41 114 | pm2.61dne | |- ( f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( A ~<_* B \/ A ~<_ C ) ) |
| 116 | 115 | exlimiv | |- ( E. f f : ( B u. C ) -1-1-onto-> ( A X. A ) -> ( A ~<_* B \/ A ~<_ C ) ) |
| 117 | 2 116 | sylbi | |- ( ( B u. C ) ~~ ( A X. A ) -> ( A ~<_* B \/ A ~<_ C ) ) |
| 118 | 1 117 | syl | |- ( ( A X. A ) ~~ ( B u. C ) -> ( A ~<_* B \/ A ~<_ C ) ) |