This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 11-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1stres | |- ( 1st |` ( A X. B ) ) : ( A X. B ) --> A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- y e. _V |
|
| 2 | vex | |- z e. _V |
|
| 3 | 1 2 | op1sta | |- U. dom { <. y , z >. } = y |
| 4 | 3 | eleq1i | |- ( U. dom { <. y , z >. } e. A <-> y e. A ) |
| 5 | 4 | biimpri | |- ( y e. A -> U. dom { <. y , z >. } e. A ) |
| 6 | 5 | adantr | |- ( ( y e. A /\ z e. B ) -> U. dom { <. y , z >. } e. A ) |
| 7 | 6 | rgen2 | |- A. y e. A A. z e. B U. dom { <. y , z >. } e. A |
| 8 | sneq | |- ( x = <. y , z >. -> { x } = { <. y , z >. } ) |
|
| 9 | 8 | dmeqd | |- ( x = <. y , z >. -> dom { x } = dom { <. y , z >. } ) |
| 10 | 9 | unieqd | |- ( x = <. y , z >. -> U. dom { x } = U. dom { <. y , z >. } ) |
| 11 | 10 | eleq1d | |- ( x = <. y , z >. -> ( U. dom { x } e. A <-> U. dom { <. y , z >. } e. A ) ) |
| 12 | 11 | ralxp | |- ( A. x e. ( A X. B ) U. dom { x } e. A <-> A. y e. A A. z e. B U. dom { <. y , z >. } e. A ) |
| 13 | 7 12 | mpbir | |- A. x e. ( A X. B ) U. dom { x } e. A |
| 14 | df-1st | |- 1st = ( x e. _V |-> U. dom { x } ) |
|
| 15 | 14 | reseq1i | |- ( 1st |` ( A X. B ) ) = ( ( x e. _V |-> U. dom { x } ) |` ( A X. B ) ) |
| 16 | ssv | |- ( A X. B ) C_ _V |
|
| 17 | resmpt | |- ( ( A X. B ) C_ _V -> ( ( x e. _V |-> U. dom { x } ) |` ( A X. B ) ) = ( x e. ( A X. B ) |-> U. dom { x } ) ) |
|
| 18 | 16 17 | ax-mp | |- ( ( x e. _V |-> U. dom { x } ) |` ( A X. B ) ) = ( x e. ( A X. B ) |-> U. dom { x } ) |
| 19 | 15 18 | eqtri | |- ( 1st |` ( A X. B ) ) = ( x e. ( A X. B ) |-> U. dom { x } ) |
| 20 | 19 | fmpt | |- ( A. x e. ( A X. B ) U. dom { x } e. A <-> ( 1st |` ( A X. B ) ) : ( A X. B ) --> A ) |
| 21 | 13 20 | mpbi | |- ( 1st |` ( A X. B ) ) : ( A X. B ) --> A |