This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is weakly dominant over its image under any function. This version of wdomimag is stated so as to avoid ax-rep . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdomima2g | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ( F " A ) ~<_* A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
| 2 | funres | |- ( Fun F -> Fun ( F |` A ) ) |
|
| 3 | funforn | |- ( Fun ( F |` A ) <-> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
|
| 4 | 2 3 | sylib | |- ( Fun F -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
| 5 | 4 | 3ad2ant1 | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
| 6 | fof | |- ( ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) -> ( F |` A ) : dom ( F |` A ) --> ran ( F |` A ) ) |
|
| 7 | 5 6 | syl | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ( F |` A ) : dom ( F |` A ) --> ran ( F |` A ) ) |
| 8 | dmres | |- dom ( F |` A ) = ( A i^i dom F ) |
|
| 9 | inss1 | |- ( A i^i dom F ) C_ A |
|
| 10 | 8 9 | eqsstri | |- dom ( F |` A ) C_ A |
| 11 | simp2 | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> A e. V ) |
|
| 12 | ssexg | |- ( ( dom ( F |` A ) C_ A /\ A e. V ) -> dom ( F |` A ) e. _V ) |
|
| 13 | 10 11 12 | sylancr | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> dom ( F |` A ) e. _V ) |
| 14 | simp3 | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ( F " A ) e. W ) |
|
| 15 | 1 14 | eqeltrrid | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ran ( F |` A ) e. W ) |
| 16 | fex2 | |- ( ( ( F |` A ) : dom ( F |` A ) --> ran ( F |` A ) /\ dom ( F |` A ) e. _V /\ ran ( F |` A ) e. W ) -> ( F |` A ) e. _V ) |
|
| 17 | 7 13 15 16 | syl3anc | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ( F |` A ) e. _V ) |
| 18 | fowdom | |- ( ( ( F |` A ) e. _V /\ ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) -> ran ( F |` A ) ~<_* dom ( F |` A ) ) |
|
| 19 | 17 5 18 | syl2anc | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ran ( F |` A ) ~<_* dom ( F |` A ) ) |
| 20 | ssdomg | |- ( A e. V -> ( dom ( F |` A ) C_ A -> dom ( F |` A ) ~<_ A ) ) |
|
| 21 | 10 20 | mpi | |- ( A e. V -> dom ( F |` A ) ~<_ A ) |
| 22 | domwdom | |- ( dom ( F |` A ) ~<_ A -> dom ( F |` A ) ~<_* A ) |
|
| 23 | 21 22 | syl | |- ( A e. V -> dom ( F |` A ) ~<_* A ) |
| 24 | 23 | 3ad2ant2 | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> dom ( F |` A ) ~<_* A ) |
| 25 | wdomtr | |- ( ( ran ( F |` A ) ~<_* dom ( F |` A ) /\ dom ( F |` A ) ~<_* A ) -> ran ( F |` A ) ~<_* A ) |
|
| 26 | 19 24 25 | syl2anc | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ran ( F |` A ) ~<_* A ) |
| 27 | 1 26 | eqbrtrid | |- ( ( Fun F /\ A e. V /\ ( F " A ) e. W ) -> ( F " A ) ~<_* A ) |