This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function is one-to-one, then the image of a subset of its domain under it is equinumerous to the subset. (This version of f1imaeng does not need ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1imaen2g | |- ( ( ( F : A -1-1-> B /\ B e. V ) /\ ( C C_ A /\ C e. V ) ) -> ( F " C ) ~~ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( ( F : A -1-1-> B /\ B e. V ) /\ ( C C_ A /\ C e. V ) ) -> C e. V ) |
|
| 2 | simplr | |- ( ( ( F : A -1-1-> B /\ B e. V ) /\ ( C C_ A /\ C e. V ) ) -> B e. V ) |
|
| 3 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 4 | fimass | |- ( F : A --> B -> ( F " C ) C_ B ) |
|
| 5 | 3 4 | syl | |- ( F : A -1-1-> B -> ( F " C ) C_ B ) |
| 6 | 5 | ad2antrr | |- ( ( ( F : A -1-1-> B /\ B e. V ) /\ ( C C_ A /\ C e. V ) ) -> ( F " C ) C_ B ) |
| 7 | 2 6 | ssexd | |- ( ( ( F : A -1-1-> B /\ B e. V ) /\ ( C C_ A /\ C e. V ) ) -> ( F " C ) e. _V ) |
| 8 | f1ores | |- ( ( F : A -1-1-> B /\ C C_ A ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
|
| 9 | 8 | ad2ant2r | |- ( ( ( F : A -1-1-> B /\ B e. V ) /\ ( C C_ A /\ C e. V ) ) -> ( F |` C ) : C -1-1-onto-> ( F " C ) ) |
| 10 | f1oen2g | |- ( ( C e. V /\ ( F " C ) e. _V /\ ( F |` C ) : C -1-1-onto-> ( F " C ) ) -> C ~~ ( F " C ) ) |
|
| 11 | 1 7 9 10 | syl3anc | |- ( ( ( F : A -1-1-> B /\ B e. V ) /\ ( C C_ A /\ C e. V ) ) -> C ~~ ( F " C ) ) |
| 12 | 11 | ensymd | |- ( ( ( F : A -1-1-> B /\ B e. V ) /\ ( C C_ A /\ C e. V ) ) -> ( F " C ) ~~ C ) |