This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdomtr | |- ( ( X ~<_* Y /\ Y ~<_* Z ) -> X ~<_* Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom | |- Rel ~<_* |
|
| 2 | 1 | brrelex2i | |- ( Y ~<_* Z -> Z e. _V ) |
| 3 | 2 | adantl | |- ( ( X ~<_* Y /\ Y ~<_* Z ) -> Z e. _V ) |
| 4 | 0wdom | |- ( Z e. _V -> (/) ~<_* Z ) |
|
| 5 | breq1 | |- ( X = (/) -> ( X ~<_* Z <-> (/) ~<_* Z ) ) |
|
| 6 | 4 5 | syl5ibrcom | |- ( Z e. _V -> ( X = (/) -> X ~<_* Z ) ) |
| 7 | 3 6 | syl | |- ( ( X ~<_* Y /\ Y ~<_* Z ) -> ( X = (/) -> X ~<_* Z ) ) |
| 8 | simpll | |- ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> X ~<_* Y ) |
|
| 9 | brwdomn0 | |- ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |
|
| 10 | 9 | adantl | |- ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |
| 11 | 8 10 | mpbid | |- ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> E. z z : Y -onto-> X ) |
| 12 | simpllr | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> Y ~<_* Z ) |
|
| 13 | simplr | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> X =/= (/) ) |
|
| 14 | dm0rn0 | |- ( dom z = (/) <-> ran z = (/) ) |
|
| 15 | 14 | necon3bii | |- ( dom z =/= (/) <-> ran z =/= (/) ) |
| 16 | 15 | a1i | |- ( z : Y -onto-> X -> ( dom z =/= (/) <-> ran z =/= (/) ) ) |
| 17 | fof | |- ( z : Y -onto-> X -> z : Y --> X ) |
|
| 18 | 17 | fdmd | |- ( z : Y -onto-> X -> dom z = Y ) |
| 19 | 18 | neeq1d | |- ( z : Y -onto-> X -> ( dom z =/= (/) <-> Y =/= (/) ) ) |
| 20 | forn | |- ( z : Y -onto-> X -> ran z = X ) |
|
| 21 | 20 | neeq1d | |- ( z : Y -onto-> X -> ( ran z =/= (/) <-> X =/= (/) ) ) |
| 22 | 16 19 21 | 3bitr3rd | |- ( z : Y -onto-> X -> ( X =/= (/) <-> Y =/= (/) ) ) |
| 23 | 22 | adantl | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( X =/= (/) <-> Y =/= (/) ) ) |
| 24 | 13 23 | mpbid | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> Y =/= (/) ) |
| 25 | brwdomn0 | |- ( Y =/= (/) -> ( Y ~<_* Z <-> E. y y : Z -onto-> Y ) ) |
|
| 26 | 24 25 | syl | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( Y ~<_* Z <-> E. y y : Z -onto-> Y ) ) |
| 27 | 12 26 | mpbid | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> E. y y : Z -onto-> Y ) |
| 28 | vex | |- z e. _V |
|
| 29 | vex | |- y e. _V |
|
| 30 | 28 29 | coex | |- ( z o. y ) e. _V |
| 31 | foco | |- ( ( z : Y -onto-> X /\ y : Z -onto-> Y ) -> ( z o. y ) : Z -onto-> X ) |
|
| 32 | fowdom | |- ( ( ( z o. y ) e. _V /\ ( z o. y ) : Z -onto-> X ) -> X ~<_* Z ) |
|
| 33 | 30 31 32 | sylancr | |- ( ( z : Y -onto-> X /\ y : Z -onto-> Y ) -> X ~<_* Z ) |
| 34 | 33 | adantl | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ ( z : Y -onto-> X /\ y : Z -onto-> Y ) ) -> X ~<_* Z ) |
| 35 | 34 | expr | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( y : Z -onto-> Y -> X ~<_* Z ) ) |
| 36 | 35 | exlimdv | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( E. y y : Z -onto-> Y -> X ~<_* Z ) ) |
| 37 | 27 36 | mpd | |- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> X ~<_* Z ) |
| 38 | 11 37 | exlimddv | |- ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> X ~<_* Z ) |
| 39 | 38 | ex | |- ( ( X ~<_* Y /\ Y ~<_* Z ) -> ( X =/= (/) -> X ~<_* Z ) ) |
| 40 | 7 39 | pm2.61dne | |- ( ( X ~<_* Y /\ Y ~<_* Z ) -> X ~<_* Z ) |