This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for unxpwdom . (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unxpwdom2 | ⊢ ( ( 𝐴 × 𝐴 ) ≈ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | ⊢ ( ( 𝐴 × 𝐴 ) ≈ ( 𝐵 ∪ 𝐶 ) → ( 𝐵 ∪ 𝐶 ) ≈ ( 𝐴 × 𝐴 ) ) | |
| 2 | bren | ⊢ ( ( 𝐵 ∪ 𝐶 ) ≈ ( 𝐴 × 𝐴 ) ↔ ∃ 𝑓 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ) | |
| 3 | ssdif0 | ⊢ ( 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ↔ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) = ∅ ) | |
| 4 | dmxpid | ⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 | |
| 5 | f1ofo | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝑓 : ( 𝐵 ∪ 𝐶 ) –onto→ ( 𝐴 × 𝐴 ) ) | |
| 6 | forn | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –onto→ ( 𝐴 × 𝐴 ) → ran 𝑓 = ( 𝐴 × 𝐴 ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ran 𝑓 = ( 𝐴 × 𝐴 ) ) |
| 8 | vex | ⊢ 𝑓 ∈ V | |
| 9 | 8 | rnex | ⊢ ran 𝑓 ∈ V |
| 10 | 7 9 | eqeltrrdi | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
| 11 | 10 | dmexd | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → dom ( 𝐴 × 𝐴 ) ∈ V ) |
| 12 | 4 11 | eqeltrrid | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝐴 ∈ V ) |
| 13 | imassrn | ⊢ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ⊆ ran ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) | |
| 14 | f1stres | ⊢ ( 1st ↾ ( 𝐴 × 𝐴 ) ) : ( 𝐴 × 𝐴 ) ⟶ 𝐴 | |
| 15 | f1of | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝑓 : ( 𝐵 ∪ 𝐶 ) ⟶ ( 𝐴 × 𝐴 ) ) | |
| 16 | fco | ⊢ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) : ( 𝐴 × 𝐴 ) ⟶ 𝐴 ∧ 𝑓 : ( 𝐵 ∪ 𝐶 ) ⟶ ( 𝐴 × 𝐴 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) : ( 𝐵 ∪ 𝐶 ) ⟶ 𝐴 ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) : ( 𝐵 ∪ 𝐶 ) ⟶ 𝐴 ) |
| 18 | 17 | frnd | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ran ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ⊆ 𝐴 ) |
| 19 | 13 18 | sstrid | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ⊆ 𝐴 ) |
| 20 | 12 19 | ssexd | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∈ V ) |
| 21 | 20 | adantr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∈ V ) |
| 22 | simpr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) | |
| 23 | ssdomg | ⊢ ( ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∈ V → ( 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) → 𝐴 ≼ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) | |
| 24 | 21 22 23 | sylc | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝐴 ≼ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
| 25 | domwdom | ⊢ ( 𝐴 ≼ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) → 𝐴 ≼* ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝐴 ≼* ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
| 27 | 17 | ffund | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → Fun ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ) |
| 28 | ssun1 | ⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) | |
| 29 | f1odm | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → dom 𝑓 = ( 𝐵 ∪ 𝐶 ) ) | |
| 30 | 8 | dmex | ⊢ dom 𝑓 ∈ V |
| 31 | 29 30 | eqeltrrdi | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐵 ∪ 𝐶 ) ∈ V ) |
| 32 | ssexg | ⊢ ( ( 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐵 ∪ 𝐶 ) ∈ V ) → 𝐵 ∈ V ) | |
| 33 | 28 31 32 | sylancr | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝐵 ∈ V ) |
| 34 | wdomima2g | ⊢ ( ( Fun ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ∧ 𝐵 ∈ V ∧ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∈ V ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ≼* 𝐵 ) | |
| 35 | 27 33 20 34 | syl3anc | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ≼* 𝐵 ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ≼* 𝐵 ) |
| 37 | wdomtr | ⊢ ( ( 𝐴 ≼* ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ∧ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ≼* 𝐵 ) → 𝐴 ≼* 𝐵 ) | |
| 38 | 26 36 37 | syl2anc | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝐴 ≼* 𝐵 ) |
| 39 | 38 | orcd | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
| 40 | 39 | ex | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐴 ⊆ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
| 41 | 3 40 | biimtrrid | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) = ∅ → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
| 42 | n0 | ⊢ ( ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) | |
| 43 | ssun2 | ⊢ 𝐶 ⊆ ( 𝐵 ∪ 𝐶 ) | |
| 44 | ssexg | ⊢ ( ( 𝐶 ⊆ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐵 ∪ 𝐶 ) ∈ V ) → 𝐶 ∈ V ) | |
| 45 | 43 31 44 | sylancr | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝐶 ∈ V ) |
| 46 | 45 | adantr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → 𝐶 ∈ V ) |
| 47 | f1ofn | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → 𝑓 Fn ( 𝐵 ∪ 𝐶 ) ) | |
| 48 | elpreima | ⊢ ( 𝑓 Fn ( 𝐵 ∪ 𝐶 ) → ( 𝑦 ∈ ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ↔ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝑦 ∈ ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ↔ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝑦 ∈ ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ↔ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) ) ) |
| 51 | elun | ⊢ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ) | |
| 52 | df-or | ⊢ ( ( 𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶 ) ↔ ( ¬ 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 53 | 51 52 | bitri | ⊢ ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( ¬ 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 54 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ¬ 𝑥 ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) | |
| 55 | 54 | ad2antlr | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) → ¬ 𝑥 ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
| 56 | 15 | ad2antrr | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑓 : ( 𝐵 ∪ 𝐶 ) ⟶ ( 𝐴 × 𝐴 ) ) |
| 57 | simprr | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 58 | 28 57 | sselid | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) |
| 59 | fvco3 | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) ⟶ ( 𝐴 × 𝐴 ) ∧ 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) = ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 60 | 56 58 59 | syl2anc | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) = ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
| 61 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → 𝑥 ∈ 𝐴 ) | |
| 62 | 61 | adantl | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 63 | 62 | snssd | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → { 𝑥 } ⊆ 𝐴 ) |
| 64 | xpss1 | ⊢ ( { 𝑥 } ⊆ 𝐴 → ( { 𝑥 } × 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( { 𝑥 } × 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( { 𝑥 } × 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ) |
| 67 | simprl | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) | |
| 68 | 66 67 | sseldd | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝐴 × 𝐴 ) ) |
| 69 | 68 | fvresd | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) = ( 1st ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
| 70 | xp1st | ⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) → ( 1st ‘ ( 𝑓 ‘ 𝑦 ) ) ∈ { 𝑥 } ) | |
| 71 | 67 70 | syl | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 1st ‘ ( 𝑓 ‘ 𝑦 ) ) ∈ { 𝑥 } ) |
| 72 | 69 71 | eqeltrd | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) ∈ { 𝑥 } ) |
| 73 | elsni | ⊢ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) ∈ { 𝑥 } → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) = 𝑥 ) | |
| 74 | 72 73 | syl | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑦 ) ) = 𝑥 ) |
| 75 | 60 74 | eqtrd | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) = 𝑥 ) |
| 76 | 17 | ffnd | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) Fn ( 𝐵 ∪ 𝐶 ) ) |
| 77 | 76 | ad2antrr | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) Fn ( 𝐵 ∪ 𝐶 ) ) |
| 78 | 28 | a1i | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) ) |
| 79 | fnfvima | ⊢ ( ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) Fn ( 𝐵 ∪ 𝐶 ) ∧ 𝐵 ⊆ ( 𝐵 ∪ 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) | |
| 80 | 77 78 57 79 | syl3anc | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) ‘ 𝑦 ) ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
| 81 | 75 80 | eqeltrrd | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) |
| 82 | 81 | expr | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) → ( 𝑦 ∈ 𝐵 → 𝑥 ∈ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) |
| 83 | 55 82 | mtod | ⊢ ( ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) → ¬ 𝑦 ∈ 𝐵 ) |
| 84 | 83 | ex | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) → ¬ 𝑦 ∈ 𝐵 ) ) |
| 85 | 84 | imim1d | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ( ¬ 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) → ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) → 𝑦 ∈ 𝐶 ) ) ) |
| 86 | 53 85 | biimtrid | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) → ( ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) → 𝑦 ∈ 𝐶 ) ) ) |
| 87 | 86 | impd | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ( 𝑦 ∈ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝑓 ‘ 𝑦 ) ∈ ( { 𝑥 } × 𝐴 ) ) → 𝑦 ∈ 𝐶 ) ) |
| 88 | 50 87 | sylbid | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝑦 ∈ ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) → 𝑦 ∈ 𝐶 ) ) |
| 89 | 88 | ssrdv | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ⊆ 𝐶 ) |
| 90 | ssdomg | ⊢ ( 𝐶 ∈ V → ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ⊆ 𝐶 → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≼ 𝐶 ) ) | |
| 91 | 46 89 90 | sylc | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≼ 𝐶 ) |
| 92 | f1ocnv | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( 𝐵 ∪ 𝐶 ) ) | |
| 93 | f1of1 | ⊢ ( ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1-onto→ ( 𝐵 ∪ 𝐶 ) → ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1→ ( 𝐵 ∪ 𝐶 ) ) | |
| 94 | 92 93 | syl | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1→ ( 𝐵 ∪ 𝐶 ) ) |
| 95 | 94 | adantr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1→ ( 𝐵 ∪ 𝐶 ) ) |
| 96 | 31 | adantr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝐵 ∪ 𝐶 ) ∈ V ) |
| 97 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 98 | 12 | adantr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → 𝐴 ∈ V ) |
| 99 | xpexg | ⊢ ( ( { 𝑥 } ∈ V ∧ 𝐴 ∈ V ) → ( { 𝑥 } × 𝐴 ) ∈ V ) | |
| 100 | 97 98 99 | sylancr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( { 𝑥 } × 𝐴 ) ∈ V ) |
| 101 | f1imaen2g | ⊢ ( ( ( ◡ 𝑓 : ( 𝐴 × 𝐴 ) –1-1→ ( 𝐵 ∪ 𝐶 ) ∧ ( 𝐵 ∪ 𝐶 ) ∈ V ) ∧ ( ( { 𝑥 } × 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ∧ ( { 𝑥 } × 𝐴 ) ∈ V ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ ( { 𝑥 } × 𝐴 ) ) | |
| 102 | 95 96 65 100 101 | syl22anc | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ ( { 𝑥 } × 𝐴 ) ) |
| 103 | vex | ⊢ 𝑥 ∈ V | |
| 104 | xpsnen2g | ⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ V ) → ( { 𝑥 } × 𝐴 ) ≈ 𝐴 ) | |
| 105 | 103 98 104 | sylancr | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( { 𝑥 } × 𝐴 ) ≈ 𝐴 ) |
| 106 | entr | ⊢ ( ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ ( { 𝑥 } × 𝐴 ) ∧ ( { 𝑥 } × 𝐴 ) ≈ 𝐴 ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ 𝐴 ) | |
| 107 | 102 105 106 | syl2anc | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ 𝐴 ) |
| 108 | domen1 | ⊢ ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≈ 𝐴 → ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≼ 𝐶 ↔ 𝐴 ≼ 𝐶 ) ) | |
| 109 | 107 108 | syl | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( ( ◡ 𝑓 “ ( { 𝑥 } × 𝐴 ) ) ≼ 𝐶 ↔ 𝐴 ≼ 𝐶 ) ) |
| 110 | 91 109 | mpbid | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → 𝐴 ≼ 𝐶 ) |
| 111 | 110 | olcd | ⊢ ( ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) ∧ 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
| 112 | 111 | ex | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
| 113 | 112 | exlimdv | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ∃ 𝑥 𝑥 ∈ ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
| 114 | 42 113 | biimtrid | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( ( 𝐴 ∖ ( ( ( 1st ↾ ( 𝐴 × 𝐴 ) ) ∘ 𝑓 ) “ 𝐵 ) ) ≠ ∅ → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) ) |
| 115 | 41 114 | pm2.61dne | ⊢ ( 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
| 116 | 115 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : ( 𝐵 ∪ 𝐶 ) –1-1-onto→ ( 𝐴 × 𝐴 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
| 117 | 2 116 | sylbi | ⊢ ( ( 𝐵 ∪ 𝐶 ) ≈ ( 𝐴 × 𝐴 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |
| 118 | 1 117 | syl | ⊢ ( ( 𝐴 × 𝐴 ) ≈ ( 𝐵 ∪ 𝐶 ) → ( 𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶 ) ) |