This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of KanamoriPincus p. 420. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unxpwdom | |- ( ( A X. A ) ~<_ ( B u. C ) -> ( A ~<_* B \/ A ~<_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | |- Rel ~<_ |
|
| 2 | 1 | brrelex2i | |- ( ( A X. A ) ~<_ ( B u. C ) -> ( B u. C ) e. _V ) |
| 3 | domeng | |- ( ( B u. C ) e. _V -> ( ( A X. A ) ~<_ ( B u. C ) <-> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( A X. A ) ~<_ ( B u. C ) -> ( ( A X. A ) ~<_ ( B u. C ) <-> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) ) |
| 5 | 4 | ibi | |- ( ( A X. A ) ~<_ ( B u. C ) -> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) |
| 6 | simprl | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A X. A ) ~~ x ) |
|
| 7 | indi | |- ( x i^i ( B u. C ) ) = ( ( x i^i B ) u. ( x i^i C ) ) |
|
| 8 | simprr | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> x C_ ( B u. C ) ) |
|
| 9 | dfss2 | |- ( x C_ ( B u. C ) <-> ( x i^i ( B u. C ) ) = x ) |
|
| 10 | 8 9 | sylib | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i ( B u. C ) ) = x ) |
| 11 | 7 10 | eqtr3id | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( ( x i^i B ) u. ( x i^i C ) ) = x ) |
| 12 | 6 11 | breqtrrd | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A X. A ) ~~ ( ( x i^i B ) u. ( x i^i C ) ) ) |
| 13 | unxpwdom2 | |- ( ( A X. A ) ~~ ( ( x i^i B ) u. ( x i^i C ) ) -> ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) ) |
| 15 | ssun1 | |- B C_ ( B u. C ) |
|
| 16 | 2 | adantr | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( B u. C ) e. _V ) |
| 17 | ssexg | |- ( ( B C_ ( B u. C ) /\ ( B u. C ) e. _V ) -> B e. _V ) |
|
| 18 | 15 16 17 | sylancr | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> B e. _V ) |
| 19 | inss2 | |- ( x i^i B ) C_ B |
|
| 20 | ssdomg | |- ( B e. _V -> ( ( x i^i B ) C_ B -> ( x i^i B ) ~<_ B ) ) |
|
| 21 | 18 19 20 | mpisyl | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i B ) ~<_ B ) |
| 22 | domwdom | |- ( ( x i^i B ) ~<_ B -> ( x i^i B ) ~<_* B ) |
|
| 23 | 21 22 | syl | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i B ) ~<_* B ) |
| 24 | wdomtr | |- ( ( A ~<_* ( x i^i B ) /\ ( x i^i B ) ~<_* B ) -> A ~<_* B ) |
|
| 25 | 24 | expcom | |- ( ( x i^i B ) ~<_* B -> ( A ~<_* ( x i^i B ) -> A ~<_* B ) ) |
| 26 | 23 25 | syl | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* ( x i^i B ) -> A ~<_* B ) ) |
| 27 | ssun2 | |- C C_ ( B u. C ) |
|
| 28 | ssexg | |- ( ( C C_ ( B u. C ) /\ ( B u. C ) e. _V ) -> C e. _V ) |
|
| 29 | 27 16 28 | sylancr | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> C e. _V ) |
| 30 | inss2 | |- ( x i^i C ) C_ C |
|
| 31 | ssdomg | |- ( C e. _V -> ( ( x i^i C ) C_ C -> ( x i^i C ) ~<_ C ) ) |
|
| 32 | 29 30 31 | mpisyl | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i C ) ~<_ C ) |
| 33 | domtr | |- ( ( A ~<_ ( x i^i C ) /\ ( x i^i C ) ~<_ C ) -> A ~<_ C ) |
|
| 34 | 33 | expcom | |- ( ( x i^i C ) ~<_ C -> ( A ~<_ ( x i^i C ) -> A ~<_ C ) ) |
| 35 | 32 34 | syl | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_ ( x i^i C ) -> A ~<_ C ) ) |
| 36 | 26 35 | orim12d | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) -> ( A ~<_* B \/ A ~<_ C ) ) ) |
| 37 | 14 36 | mpd | |- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* B \/ A ~<_ C ) ) |
| 38 | 5 37 | exlimddv | |- ( ( A X. A ) ~<_ ( B u. C ) -> ( A ~<_* B \/ A ~<_ C ) ) |