This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domwdom | |- ( X ~<_ Y -> X ~<_* Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqne | |- ( -. X = (/) -> X =/= (/) ) |
|
| 2 | 1 | adantl | |- ( ( X ~<_ Y /\ -. X = (/) ) -> X =/= (/) ) |
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex1i | |- ( X ~<_ Y -> X e. _V ) |
| 5 | 0sdomg | |- ( X e. _V -> ( (/) ~< X <-> X =/= (/) ) ) |
|
| 6 | 4 5 | syl | |- ( X ~<_ Y -> ( (/) ~< X <-> X =/= (/) ) ) |
| 7 | 6 | adantr | |- ( ( X ~<_ Y /\ -. X = (/) ) -> ( (/) ~< X <-> X =/= (/) ) ) |
| 8 | 2 7 | mpbird | |- ( ( X ~<_ Y /\ -. X = (/) ) -> (/) ~< X ) |
| 9 | simpl | |- ( ( X ~<_ Y /\ -. X = (/) ) -> X ~<_ Y ) |
|
| 10 | fodomr | |- ( ( (/) ~< X /\ X ~<_ Y ) -> E. y y : Y -onto-> X ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( X ~<_ Y /\ -. X = (/) ) -> E. y y : Y -onto-> X ) |
| 12 | 11 | ex | |- ( X ~<_ Y -> ( -. X = (/) -> E. y y : Y -onto-> X ) ) |
| 13 | 12 | orrd | |- ( X ~<_ Y -> ( X = (/) \/ E. y y : Y -onto-> X ) ) |
| 14 | 3 | brrelex2i | |- ( X ~<_ Y -> Y e. _V ) |
| 15 | brwdom | |- ( Y e. _V -> ( X ~<_* Y <-> ( X = (/) \/ E. y y : Y -onto-> X ) ) ) |
|
| 16 | 14 15 | syl | |- ( X ~<_ Y -> ( X ~<_* Y <-> ( X = (/) \/ E. y y : Y -onto-> X ) ) ) |
| 17 | 13 16 | mpbird | |- ( X ~<_ Y -> X ~<_* Y ) |