This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgptsmscls.b | |- B = ( Base ` G ) |
|
| tgptsmscls.j | |- J = ( TopOpen ` G ) |
||
| tgptsmscls.1 | |- ( ph -> G e. CMnd ) |
||
| tgptsmscls.2 | |- ( ph -> G e. TopGrp ) |
||
| tgptsmscls.a | |- ( ph -> A e. V ) |
||
| tgptsmscls.f | |- ( ph -> F : A --> B ) |
||
| Assertion | tgptsmscld | |- ( ph -> ( G tsums F ) e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgptsmscls.b | |- B = ( Base ` G ) |
|
| 2 | tgptsmscls.j | |- J = ( TopOpen ` G ) |
|
| 3 | tgptsmscls.1 | |- ( ph -> G e. CMnd ) |
|
| 4 | tgptsmscls.2 | |- ( ph -> G e. TopGrp ) |
|
| 5 | tgptsmscls.a | |- ( ph -> A e. V ) |
|
| 6 | tgptsmscls.f | |- ( ph -> F : A --> B ) |
|
| 7 | 2 1 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` B ) ) |
| 8 | 4 7 | syl | |- ( ph -> J e. ( TopOn ` B ) ) |
| 9 | topontop | |- ( J e. ( TopOn ` B ) -> J e. Top ) |
|
| 10 | 8 9 | syl | |- ( ph -> J e. Top ) |
| 11 | 0cld | |- ( J e. Top -> (/) e. ( Clsd ` J ) ) |
|
| 12 | 10 11 | syl | |- ( ph -> (/) e. ( Clsd ` J ) ) |
| 13 | eleq1 | |- ( ( G tsums F ) = (/) -> ( ( G tsums F ) e. ( Clsd ` J ) <-> (/) e. ( Clsd ` J ) ) ) |
|
| 14 | 12 13 | syl5ibrcom | |- ( ph -> ( ( G tsums F ) = (/) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
| 15 | n0 | |- ( ( G tsums F ) =/= (/) <-> E. x x e. ( G tsums F ) ) |
|
| 16 | 3 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> G e. CMnd ) |
| 17 | 4 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopGrp ) |
| 18 | 5 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> A e. V ) |
| 19 | 6 | adantr | |- ( ( ph /\ x e. ( G tsums F ) ) -> F : A --> B ) |
| 20 | simpr | |- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( G tsums F ) ) |
|
| 21 | 1 2 16 17 18 19 20 | tgptsmscls | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums F ) = ( ( cls ` J ) ` { x } ) ) |
| 22 | tgptps | |- ( G e. TopGrp -> G e. TopSp ) |
|
| 23 | 4 22 | syl | |- ( ph -> G e. TopSp ) |
| 24 | 1 3 23 5 6 | tsmscl | |- ( ph -> ( G tsums F ) C_ B ) |
| 25 | toponuni | |- ( J e. ( TopOn ` B ) -> B = U. J ) |
|
| 26 | 8 25 | syl | |- ( ph -> B = U. J ) |
| 27 | 24 26 | sseqtrd | |- ( ph -> ( G tsums F ) C_ U. J ) |
| 28 | 27 | sselda | |- ( ( ph /\ x e. ( G tsums F ) ) -> x e. U. J ) |
| 29 | 28 | snssd | |- ( ( ph /\ x e. ( G tsums F ) ) -> { x } C_ U. J ) |
| 30 | eqid | |- U. J = U. J |
|
| 31 | 30 | clscld | |- ( ( J e. Top /\ { x } C_ U. J ) -> ( ( cls ` J ) ` { x } ) e. ( Clsd ` J ) ) |
| 32 | 10 29 31 | syl2an2r | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { x } ) e. ( Clsd ` J ) ) |
| 33 | 21 32 | eqeltrd | |- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums F ) e. ( Clsd ` J ) ) |
| 34 | 33 | ex | |- ( ph -> ( x e. ( G tsums F ) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
| 35 | 34 | exlimdv | |- ( ph -> ( E. x x e. ( G tsums F ) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
| 36 | 15 35 | biimtrid | |- ( ph -> ( ( G tsums F ) =/= (/) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
| 37 | 14 36 | pm2.61dne | |- ( ph -> ( G tsums F ) e. ( Clsd ` J ) ) |