This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqgabl.x | |- X = ( Base ` G ) |
|
| eqgabl.n | |- .- = ( -g ` G ) |
||
| eqgabl.r | |- .~ = ( G ~QG S ) |
||
| Assertion | eqgabl | |- ( ( G e. Abel /\ S C_ X ) -> ( A .~ B <-> ( A e. X /\ B e. X /\ ( B .- A ) e. S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgabl.x | |- X = ( Base ` G ) |
|
| 2 | eqgabl.n | |- .- = ( -g ` G ) |
|
| 3 | eqgabl.r | |- .~ = ( G ~QG S ) |
|
| 4 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 1 4 5 3 | eqgval | |- ( ( G e. Abel /\ S C_ X ) -> ( A .~ B <-> ( A e. X /\ B e. X /\ ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) e. S ) ) ) |
| 7 | simpll | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> G e. Abel ) |
|
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 9 | 8 | ad2antrr | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> G e. Grp ) |
| 10 | simprl | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
|
| 11 | 1 4 | grpinvcl | |- ( ( G e. Grp /\ A e. X ) -> ( ( invg ` G ) ` A ) e. X ) |
| 12 | 9 10 11 | syl2anc | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( invg ` G ) ` A ) e. X ) |
| 13 | simprr | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
|
| 14 | 1 5 | ablcom | |- ( ( G e. Abel /\ ( ( invg ` G ) ` A ) e. X /\ B e. X ) -> ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) = ( B ( +g ` G ) ( ( invg ` G ) ` A ) ) ) |
| 15 | 7 12 13 14 | syl3anc | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) = ( B ( +g ` G ) ( ( invg ` G ) ` A ) ) ) |
| 16 | 1 5 4 2 | grpsubval | |- ( ( B e. X /\ A e. X ) -> ( B .- A ) = ( B ( +g ` G ) ( ( invg ` G ) ` A ) ) ) |
| 17 | 13 10 16 | syl2anc | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( B .- A ) = ( B ( +g ` G ) ( ( invg ` G ) ` A ) ) ) |
| 18 | 15 17 | eqtr4d | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) = ( B .- A ) ) |
| 19 | 18 | eleq1d | |- ( ( ( G e. Abel /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) e. S <-> ( B .- A ) e. S ) ) |
| 20 | 19 | pm5.32da | |- ( ( G e. Abel /\ S C_ X ) -> ( ( ( A e. X /\ B e. X ) /\ ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) e. S ) <-> ( ( A e. X /\ B e. X ) /\ ( B .- A ) e. S ) ) ) |
| 21 | df-3an | |- ( ( A e. X /\ B e. X /\ ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) e. S ) <-> ( ( A e. X /\ B e. X ) /\ ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) e. S ) ) |
|
| 22 | df-3an | |- ( ( A e. X /\ B e. X /\ ( B .- A ) e. S ) <-> ( ( A e. X /\ B e. X ) /\ ( B .- A ) e. S ) ) |
|
| 23 | 20 21 22 | 3bitr4g | |- ( ( G e. Abel /\ S C_ X ) -> ( ( A e. X /\ B e. X /\ ( ( ( invg ` G ) ` A ) ( +g ` G ) B ) e. S ) <-> ( A e. X /\ B e. X /\ ( B .- A ) e. S ) ) ) |
| 24 | 6 23 | bitrd | |- ( ( G e. Abel /\ S C_ X ) -> ( A .~ B <-> ( A e. X /\ B e. X /\ ( B .- A ) e. S ) ) ) |