This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmscl.b | |- B = ( Base ` G ) |
|
| tsmscl.1 | |- ( ph -> G e. CMnd ) |
||
| tsmscl.2 | |- ( ph -> G e. TopSp ) |
||
| tsmscl.a | |- ( ph -> A e. V ) |
||
| tsmscl.f | |- ( ph -> F : A --> B ) |
||
| Assertion | tsmscl | |- ( ph -> ( G tsums F ) C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmscl.b | |- B = ( Base ` G ) |
|
| 2 | tsmscl.1 | |- ( ph -> G e. CMnd ) |
|
| 3 | tsmscl.2 | |- ( ph -> G e. TopSp ) |
|
| 4 | tsmscl.a | |- ( ph -> A e. V ) |
|
| 5 | tsmscl.f | |- ( ph -> F : A --> B ) |
|
| 6 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 7 | eqid | |- ( ~P A i^i Fin ) = ( ~P A i^i Fin ) |
|
| 8 | 1 6 7 2 3 4 5 | eltsms | |- ( ph -> ( x e. ( G tsums F ) <-> ( x e. B /\ A. w e. ( TopOpen ` G ) ( x e. w -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. w ) ) ) ) ) |
| 9 | simpl | |- ( ( x e. B /\ A. w e. ( TopOpen ` G ) ( x e. w -> E. z e. ( ~P A i^i Fin ) A. y e. ( ~P A i^i Fin ) ( z C_ y -> ( G gsum ( F |` y ) ) e. w ) ) ) -> x e. B ) |
|
| 10 | 8 9 | biimtrdi | |- ( ph -> ( x e. ( G tsums F ) -> x e. B ) ) |
| 11 | 10 | ssrdv | |- ( ph -> ( G tsums F ) C_ B ) |