This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | snclseqg.x | |- X = ( Base ` G ) |
|
| snclseqg.j | |- J = ( TopOpen ` G ) |
||
| snclseqg.z | |- .0. = ( 0g ` G ) |
||
| snclseqg.r | |- .~ = ( G ~QG S ) |
||
| snclseqg.s | |- S = ( ( cls ` J ) ` { .0. } ) |
||
| Assertion | snclseqg | |- ( ( G e. TopGrp /\ A e. X ) -> [ A ] .~ = ( ( cls ` J ) ` { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snclseqg.x | |- X = ( Base ` G ) |
|
| 2 | snclseqg.j | |- J = ( TopOpen ` G ) |
|
| 3 | snclseqg.z | |- .0. = ( 0g ` G ) |
|
| 4 | snclseqg.r | |- .~ = ( G ~QG S ) |
|
| 5 | snclseqg.s | |- S = ( ( cls ` J ) ` { .0. } ) |
|
| 6 | 5 | imaeq2i | |- ( ( x e. X |-> ( A ( +g ` G ) x ) ) " S ) = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " ( ( cls ` J ) ` { .0. } ) ) |
| 7 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 8 | 7 | adantr | |- ( ( G e. TopGrp /\ A e. X ) -> G e. Grp ) |
| 9 | 2 1 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` X ) ) |
| 10 | 9 | adantr | |- ( ( G e. TopGrp /\ A e. X ) -> J e. ( TopOn ` X ) ) |
| 11 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 12 | 10 11 | syl | |- ( ( G e. TopGrp /\ A e. X ) -> J e. Top ) |
| 13 | 1 3 | grpidcl | |- ( G e. Grp -> .0. e. X ) |
| 14 | 8 13 | syl | |- ( ( G e. TopGrp /\ A e. X ) -> .0. e. X ) |
| 15 | 14 | snssd | |- ( ( G e. TopGrp /\ A e. X ) -> { .0. } C_ X ) |
| 16 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 17 | 10 16 | syl | |- ( ( G e. TopGrp /\ A e. X ) -> X = U. J ) |
| 18 | 15 17 | sseqtrd | |- ( ( G e. TopGrp /\ A e. X ) -> { .0. } C_ U. J ) |
| 19 | eqid | |- U. J = U. J |
|
| 20 | 19 | clsss3 | |- ( ( J e. Top /\ { .0. } C_ U. J ) -> ( ( cls ` J ) ` { .0. } ) C_ U. J ) |
| 21 | 12 18 20 | syl2anc | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( cls ` J ) ` { .0. } ) C_ U. J ) |
| 22 | 21 17 | sseqtrrd | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( cls ` J ) ` { .0. } ) C_ X ) |
| 23 | 5 22 | eqsstrid | |- ( ( G e. TopGrp /\ A e. X ) -> S C_ X ) |
| 24 | simpr | |- ( ( G e. TopGrp /\ A e. X ) -> A e. X ) |
|
| 25 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 26 | 1 4 25 | eqglact | |- ( ( G e. Grp /\ S C_ X /\ A e. X ) -> [ A ] .~ = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " S ) ) |
| 27 | 8 23 24 26 | syl3anc | |- ( ( G e. TopGrp /\ A e. X ) -> [ A ] .~ = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " S ) ) |
| 28 | eqid | |- ( x e. X |-> ( A ( +g ` G ) x ) ) = ( x e. X |-> ( A ( +g ` G ) x ) ) |
|
| 29 | 28 1 25 2 | tgplacthmeo | |- ( ( G e. TopGrp /\ A e. X ) -> ( x e. X |-> ( A ( +g ` G ) x ) ) e. ( J Homeo J ) ) |
| 30 | 19 | hmeocls | |- ( ( ( x e. X |-> ( A ( +g ` G ) x ) ) e. ( J Homeo J ) /\ { .0. } C_ U. J ) -> ( ( cls ` J ) ` ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) ) = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " ( ( cls ` J ) ` { .0. } ) ) ) |
| 31 | 29 18 30 | syl2anc | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( cls ` J ) ` ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) ) = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " ( ( cls ` J ) ` { .0. } ) ) ) |
| 32 | 6 27 31 | 3eqtr4a | |- ( ( G e. TopGrp /\ A e. X ) -> [ A ] .~ = ( ( cls ` J ) ` ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) ) ) |
| 33 | df-ima | |- ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) = ran ( ( x e. X |-> ( A ( +g ` G ) x ) ) |` { .0. } ) |
|
| 34 | 15 | resmptd | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( x e. X |-> ( A ( +g ` G ) x ) ) |` { .0. } ) = ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) ) |
| 35 | 34 | rneqd | |- ( ( G e. TopGrp /\ A e. X ) -> ran ( ( x e. X |-> ( A ( +g ` G ) x ) ) |` { .0. } ) = ran ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) ) |
| 36 | 33 35 | eqtrid | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) = ran ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) ) |
| 37 | 3 | fvexi | |- .0. e. _V |
| 38 | oveq2 | |- ( x = .0. -> ( A ( +g ` G ) x ) = ( A ( +g ` G ) .0. ) ) |
|
| 39 | 38 | eqeq2d | |- ( x = .0. -> ( y = ( A ( +g ` G ) x ) <-> y = ( A ( +g ` G ) .0. ) ) ) |
| 40 | 37 39 | rexsn | |- ( E. x e. { .0. } y = ( A ( +g ` G ) x ) <-> y = ( A ( +g ` G ) .0. ) ) |
| 41 | 1 25 3 | grprid | |- ( ( G e. Grp /\ A e. X ) -> ( A ( +g ` G ) .0. ) = A ) |
| 42 | 7 41 | sylan | |- ( ( G e. TopGrp /\ A e. X ) -> ( A ( +g ` G ) .0. ) = A ) |
| 43 | 42 | eqeq2d | |- ( ( G e. TopGrp /\ A e. X ) -> ( y = ( A ( +g ` G ) .0. ) <-> y = A ) ) |
| 44 | 40 43 | bitrid | |- ( ( G e. TopGrp /\ A e. X ) -> ( E. x e. { .0. } y = ( A ( +g ` G ) x ) <-> y = A ) ) |
| 45 | 44 | abbidv | |- ( ( G e. TopGrp /\ A e. X ) -> { y | E. x e. { .0. } y = ( A ( +g ` G ) x ) } = { y | y = A } ) |
| 46 | eqid | |- ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) = ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) |
|
| 47 | 46 | rnmpt | |- ran ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) = { y | E. x e. { .0. } y = ( A ( +g ` G ) x ) } |
| 48 | df-sn | |- { A } = { y | y = A } |
|
| 49 | 45 47 48 | 3eqtr4g | |- ( ( G e. TopGrp /\ A e. X ) -> ran ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) = { A } ) |
| 50 | 36 49 | eqtrd | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) = { A } ) |
| 51 | 50 | fveq2d | |- ( ( G e. TopGrp /\ A e. X ) -> ( ( cls ` J ) ` ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) ) = ( ( cls ` J ) ` { A } ) ) |
| 52 | 32 51 | eqtrd | |- ( ( G e. TopGrp /\ A e. X ) -> [ A ] .~ = ( ( cls ` J ) ` { A } ) ) |