This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmssub.b | |- B = ( Base ` G ) |
|
| tsmssub.p | |- .- = ( -g ` G ) |
||
| tsmssub.1 | |- ( ph -> G e. CMnd ) |
||
| tsmssub.2 | |- ( ph -> G e. TopGrp ) |
||
| tsmssub.a | |- ( ph -> A e. V ) |
||
| tsmssub.f | |- ( ph -> F : A --> B ) |
||
| tsmssub.h | |- ( ph -> H : A --> B ) |
||
| tsmssub.x | |- ( ph -> X e. ( G tsums F ) ) |
||
| tsmssub.y | |- ( ph -> Y e. ( G tsums H ) ) |
||
| Assertion | tsmssub | |- ( ph -> ( X .- Y ) e. ( G tsums ( F oF .- H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmssub.b | |- B = ( Base ` G ) |
|
| 2 | tsmssub.p | |- .- = ( -g ` G ) |
|
| 3 | tsmssub.1 | |- ( ph -> G e. CMnd ) |
|
| 4 | tsmssub.2 | |- ( ph -> G e. TopGrp ) |
|
| 5 | tsmssub.a | |- ( ph -> A e. V ) |
|
| 6 | tsmssub.f | |- ( ph -> F : A --> B ) |
|
| 7 | tsmssub.h | |- ( ph -> H : A --> B ) |
|
| 8 | tsmssub.x | |- ( ph -> X e. ( G tsums F ) ) |
|
| 9 | tsmssub.y | |- ( ph -> Y e. ( G tsums H ) ) |
|
| 10 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 11 | tgptmd | |- ( G e. TopGrp -> G e. TopMnd ) |
|
| 12 | 4 11 | syl | |- ( ph -> G e. TopMnd ) |
| 13 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 14 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 15 | 1 14 | grpinvf | |- ( G e. Grp -> ( invg ` G ) : B --> B ) |
| 16 | 4 13 15 | 3syl | |- ( ph -> ( invg ` G ) : B --> B ) |
| 17 | fco | |- ( ( ( invg ` G ) : B --> B /\ H : A --> B ) -> ( ( invg ` G ) o. H ) : A --> B ) |
|
| 18 | 16 7 17 | syl2anc | |- ( ph -> ( ( invg ` G ) o. H ) : A --> B ) |
| 19 | 1 14 3 4 5 7 9 | tsmsinv | |- ( ph -> ( ( invg ` G ) ` Y ) e. ( G tsums ( ( invg ` G ) o. H ) ) ) |
| 20 | 1 10 3 12 5 6 18 8 19 | tsmsadd | |- ( ph -> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) e. ( G tsums ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) ) |
| 21 | tgptps | |- ( G e. TopGrp -> G e. TopSp ) |
|
| 22 | 4 21 | syl | |- ( ph -> G e. TopSp ) |
| 23 | 1 3 22 5 6 | tsmscl | |- ( ph -> ( G tsums F ) C_ B ) |
| 24 | 23 8 | sseldd | |- ( ph -> X e. B ) |
| 25 | 1 3 22 5 7 | tsmscl | |- ( ph -> ( G tsums H ) C_ B ) |
| 26 | 25 9 | sseldd | |- ( ph -> Y e. B ) |
| 27 | 1 10 14 2 | grpsubval | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 28 | 24 26 27 | syl2anc | |- ( ph -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) ) |
| 29 | 6 | ffvelcdmda | |- ( ( ph /\ k e. A ) -> ( F ` k ) e. B ) |
| 30 | 7 | ffvelcdmda | |- ( ( ph /\ k e. A ) -> ( H ` k ) e. B ) |
| 31 | 1 10 14 2 | grpsubval | |- ( ( ( F ` k ) e. B /\ ( H ` k ) e. B ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 32 | 29 30 31 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 33 | 32 | mpteq2dva | |- ( ph -> ( k e. A |-> ( ( F ` k ) .- ( H ` k ) ) ) = ( k e. A |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
| 34 | 6 | feqmptd | |- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
| 35 | 7 | feqmptd | |- ( ph -> H = ( k e. A |-> ( H ` k ) ) ) |
| 36 | 5 29 30 34 35 | offval2 | |- ( ph -> ( F oF .- H ) = ( k e. A |-> ( ( F ` k ) .- ( H ` k ) ) ) ) |
| 37 | fvexd | |- ( ( ph /\ k e. A ) -> ( ( invg ` G ) ` ( H ` k ) ) e. _V ) |
|
| 38 | 16 | feqmptd | |- ( ph -> ( invg ` G ) = ( x e. B |-> ( ( invg ` G ) ` x ) ) ) |
| 39 | fveq2 | |- ( x = ( H ` k ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( H ` k ) ) ) |
|
| 40 | 30 35 38 39 | fmptco | |- ( ph -> ( ( invg ` G ) o. H ) = ( k e. A |-> ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 41 | 5 29 37 34 40 | offval2 | |- ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) = ( k e. A |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
| 42 | 33 36 41 | 3eqtr4d | |- ( ph -> ( F oF .- H ) = ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) |
| 43 | 42 | oveq2d | |- ( ph -> ( G tsums ( F oF .- H ) ) = ( G tsums ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) ) |
| 44 | 20 28 43 | 3eltr4d | |- ( ph -> ( X .- Y ) e. ( G tsums ( F oF .- H ) ) ) |