This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0nsg.z | |- .0. = ( 0g ` G ) |
|
| Assertion | 0nsg | |- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nsg.z | |- .0. = ( 0g ` G ) |
|
| 2 | 1 | 0subg | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| 3 | elsni | |- ( y e. { .0. } -> y = .0. ) |
|
| 4 | 3 | ad2antll | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. { .0. } ) ) -> y = .0. ) |
| 5 | 4 | oveq2d | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. { .0. } ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` G ) .0. ) ) |
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | 6 7 1 | grprid | |- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( x ( +g ` G ) .0. ) = x ) |
| 9 | 8 | adantrr | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. { .0. } ) ) -> ( x ( +g ` G ) .0. ) = x ) |
| 10 | 5 9 | eqtrd | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. { .0. } ) ) -> ( x ( +g ` G ) y ) = x ) |
| 11 | 10 | oveq1d | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. { .0. } ) ) -> ( ( x ( +g ` G ) y ) ( -g ` G ) x ) = ( x ( -g ` G ) x ) ) |
| 12 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 13 | 6 1 12 | grpsubid | |- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( x ( -g ` G ) x ) = .0. ) |
| 14 | 13 | adantrr | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. { .0. } ) ) -> ( x ( -g ` G ) x ) = .0. ) |
| 15 | 11 14 | eqtrd | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. { .0. } ) ) -> ( ( x ( +g ` G ) y ) ( -g ` G ) x ) = .0. ) |
| 16 | ovex | |- ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. _V |
|
| 17 | 16 | elsn | |- ( ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. { .0. } <-> ( ( x ( +g ` G ) y ) ( -g ` G ) x ) = .0. ) |
| 18 | 15 17 | sylibr | |- ( ( G e. Grp /\ ( x e. ( Base ` G ) /\ y e. { .0. } ) ) -> ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. { .0. } ) |
| 19 | 18 | ralrimivva | |- ( G e. Grp -> A. x e. ( Base ` G ) A. y e. { .0. } ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. { .0. } ) |
| 20 | 6 7 12 | isnsg3 | |- ( { .0. } e. ( NrmSGrp ` G ) <-> ( { .0. } e. ( SubGrp ` G ) /\ A. x e. ( Base ` G ) A. y e. { .0. } ( ( x ( +g ` G ) y ) ( -g ` G ) x ) e. { .0. } ) ) |
| 21 | 2 19 20 | sylanbrc | |- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |