This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgntr.h | |- J = ( TopOpen ` G ) |
|
| Assertion | clssubg | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` J ) ` S ) e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgntr.h | |- J = ( TopOpen ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | 1 2 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 4 | 3 | adantr | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 5 | topontop | |- ( J e. ( TopOn ` ( Base ` G ) ) -> J e. Top ) |
|
| 6 | 4 5 | syl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> J e. Top ) |
| 7 | 2 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 8 | 7 | adantl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S C_ ( Base ` G ) ) |
| 9 | toponuni | |- ( J e. ( TopOn ` ( Base ` G ) ) -> ( Base ` G ) = U. J ) |
|
| 10 | 4 9 | syl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( Base ` G ) = U. J ) |
| 11 | 8 10 | sseqtrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S C_ U. J ) |
| 12 | eqid | |- U. J = U. J |
|
| 13 | 12 | clsss3 | |- ( ( J e. Top /\ S C_ U. J ) -> ( ( cls ` J ) ` S ) C_ U. J ) |
| 14 | 6 11 13 | syl2anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` J ) ` S ) C_ U. J ) |
| 15 | 14 10 | sseqtrrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` J ) ` S ) C_ ( Base ` G ) ) |
| 16 | 12 | sscls | |- ( ( J e. Top /\ S C_ U. J ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 17 | 6 11 16 | syl2anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 18 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 19 | 18 | subg0cl | |- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) e. S ) |
| 20 | 19 | adantl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( 0g ` G ) e. S ) |
| 21 | 20 | ne0d | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> S =/= (/) ) |
| 22 | ssn0 | |- ( ( S C_ ( ( cls ` J ) ` S ) /\ S =/= (/) ) -> ( ( cls ` J ) ` S ) =/= (/) ) |
|
| 23 | 17 21 22 | syl2anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` J ) ` S ) =/= (/) ) |
| 24 | df-ov | |- ( x ( -g ` G ) y ) = ( ( -g ` G ) ` <. x , y >. ) |
|
| 25 | opelxpi | |- ( ( x e. ( ( cls ` J ) ` S ) /\ y e. ( ( cls ` J ) ` S ) ) -> <. x , y >. e. ( ( ( cls ` J ) ` S ) X. ( ( cls ` J ) ` S ) ) ) |
|
| 26 | txcls | |- ( ( ( J e. ( TopOn ` ( Base ` G ) ) /\ J e. ( TopOn ` ( Base ` G ) ) ) /\ ( S C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) ) -> ( ( cls ` ( J tX J ) ) ` ( S X. S ) ) = ( ( ( cls ` J ) ` S ) X. ( ( cls ` J ) ` S ) ) ) |
|
| 27 | 4 4 8 8 26 | syl22anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` ( J tX J ) ) ` ( S X. S ) ) = ( ( ( cls ` J ) ` S ) X. ( ( cls ` J ) ` S ) ) ) |
| 28 | txtopon | |- ( ( J e. ( TopOn ` ( Base ` G ) ) /\ J e. ( TopOn ` ( Base ` G ) ) ) -> ( J tX J ) e. ( TopOn ` ( ( Base ` G ) X. ( Base ` G ) ) ) ) |
|
| 29 | 4 4 28 | syl2anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( J tX J ) e. ( TopOn ` ( ( Base ` G ) X. ( Base ` G ) ) ) ) |
| 30 | topontop | |- ( ( J tX J ) e. ( TopOn ` ( ( Base ` G ) X. ( Base ` G ) ) ) -> ( J tX J ) e. Top ) |
|
| 31 | 29 30 | syl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( J tX J ) e. Top ) |
| 32 | cnvimass | |- ( `' ( -g ` G ) " S ) C_ dom ( -g ` G ) |
|
| 33 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 34 | 33 | adantr | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> G e. Grp ) |
| 35 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 36 | 2 35 | grpsubf | |- ( G e. Grp -> ( -g ` G ) : ( ( Base ` G ) X. ( Base ` G ) ) --> ( Base ` G ) ) |
| 37 | 34 36 | syl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( -g ` G ) : ( ( Base ` G ) X. ( Base ` G ) ) --> ( Base ` G ) ) |
| 38 | 32 37 | fssdm | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( `' ( -g ` G ) " S ) C_ ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 39 | toponuni | |- ( ( J tX J ) e. ( TopOn ` ( ( Base ` G ) X. ( Base ` G ) ) ) -> ( ( Base ` G ) X. ( Base ` G ) ) = U. ( J tX J ) ) |
|
| 40 | 29 39 | syl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( Base ` G ) X. ( Base ` G ) ) = U. ( J tX J ) ) |
| 41 | 38 40 | sseqtrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( `' ( -g ` G ) " S ) C_ U. ( J tX J ) ) |
| 42 | 35 | subgsubcl | |- ( ( S e. ( SubGrp ` G ) /\ x e. S /\ y e. S ) -> ( x ( -g ` G ) y ) e. S ) |
| 43 | 42 | 3expb | |- ( ( S e. ( SubGrp ` G ) /\ ( x e. S /\ y e. S ) ) -> ( x ( -g ` G ) y ) e. S ) |
| 44 | 43 | ralrimivva | |- ( S e. ( SubGrp ` G ) -> A. x e. S A. y e. S ( x ( -g ` G ) y ) e. S ) |
| 45 | fveq2 | |- ( z = <. x , y >. -> ( ( -g ` G ) ` z ) = ( ( -g ` G ) ` <. x , y >. ) ) |
|
| 46 | 45 24 | eqtr4di | |- ( z = <. x , y >. -> ( ( -g ` G ) ` z ) = ( x ( -g ` G ) y ) ) |
| 47 | 46 | eleq1d | |- ( z = <. x , y >. -> ( ( ( -g ` G ) ` z ) e. S <-> ( x ( -g ` G ) y ) e. S ) ) |
| 48 | 47 | ralxp | |- ( A. z e. ( S X. S ) ( ( -g ` G ) ` z ) e. S <-> A. x e. S A. y e. S ( x ( -g ` G ) y ) e. S ) |
| 49 | 44 48 | sylibr | |- ( S e. ( SubGrp ` G ) -> A. z e. ( S X. S ) ( ( -g ` G ) ` z ) e. S ) |
| 50 | 49 | adantl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> A. z e. ( S X. S ) ( ( -g ` G ) ` z ) e. S ) |
| 51 | 37 | ffund | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> Fun ( -g ` G ) ) |
| 52 | xpss12 | |- ( ( S C_ ( Base ` G ) /\ S C_ ( Base ` G ) ) -> ( S X. S ) C_ ( ( Base ` G ) X. ( Base ` G ) ) ) |
|
| 53 | 8 8 52 | syl2anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( S X. S ) C_ ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 54 | 37 | fdmd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> dom ( -g ` G ) = ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 55 | 53 54 | sseqtrrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( S X. S ) C_ dom ( -g ` G ) ) |
| 56 | funimass5 | |- ( ( Fun ( -g ` G ) /\ ( S X. S ) C_ dom ( -g ` G ) ) -> ( ( S X. S ) C_ ( `' ( -g ` G ) " S ) <-> A. z e. ( S X. S ) ( ( -g ` G ) ` z ) e. S ) ) |
|
| 57 | 51 55 56 | syl2anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( S X. S ) C_ ( `' ( -g ` G ) " S ) <-> A. z e. ( S X. S ) ( ( -g ` G ) ` z ) e. S ) ) |
| 58 | 50 57 | mpbird | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( S X. S ) C_ ( `' ( -g ` G ) " S ) ) |
| 59 | eqid | |- U. ( J tX J ) = U. ( J tX J ) |
|
| 60 | 59 | clsss | |- ( ( ( J tX J ) e. Top /\ ( `' ( -g ` G ) " S ) C_ U. ( J tX J ) /\ ( S X. S ) C_ ( `' ( -g ` G ) " S ) ) -> ( ( cls ` ( J tX J ) ) ` ( S X. S ) ) C_ ( ( cls ` ( J tX J ) ) ` ( `' ( -g ` G ) " S ) ) ) |
| 61 | 31 41 58 60 | syl3anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` ( J tX J ) ) ` ( S X. S ) ) C_ ( ( cls ` ( J tX J ) ) ` ( `' ( -g ` G ) " S ) ) ) |
| 62 | 1 35 | tgpsubcn | |- ( G e. TopGrp -> ( -g ` G ) e. ( ( J tX J ) Cn J ) ) |
| 63 | 62 | adantr | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( -g ` G ) e. ( ( J tX J ) Cn J ) ) |
| 64 | 12 | cncls2i | |- ( ( ( -g ` G ) e. ( ( J tX J ) Cn J ) /\ S C_ U. J ) -> ( ( cls ` ( J tX J ) ) ` ( `' ( -g ` G ) " S ) ) C_ ( `' ( -g ` G ) " ( ( cls ` J ) ` S ) ) ) |
| 65 | 63 11 64 | syl2anc | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` ( J tX J ) ) ` ( `' ( -g ` G ) " S ) ) C_ ( `' ( -g ` G ) " ( ( cls ` J ) ` S ) ) ) |
| 66 | 61 65 | sstrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` ( J tX J ) ) ` ( S X. S ) ) C_ ( `' ( -g ` G ) " ( ( cls ` J ) ` S ) ) ) |
| 67 | 27 66 | eqsstrrd | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( ( cls ` J ) ` S ) X. ( ( cls ` J ) ` S ) ) C_ ( `' ( -g ` G ) " ( ( cls ` J ) ` S ) ) ) |
| 68 | 67 | sselda | |- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ <. x , y >. e. ( ( ( cls ` J ) ` S ) X. ( ( cls ` J ) ` S ) ) ) -> <. x , y >. e. ( `' ( -g ` G ) " ( ( cls ` J ) ` S ) ) ) |
| 69 | 25 68 | sylan2 | |- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ ( x e. ( ( cls ` J ) ` S ) /\ y e. ( ( cls ` J ) ` S ) ) ) -> <. x , y >. e. ( `' ( -g ` G ) " ( ( cls ` J ) ` S ) ) ) |
| 70 | 33 | ad2antrr | |- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ ( x e. ( ( cls ` J ) ` S ) /\ y e. ( ( cls ` J ) ` S ) ) ) -> G e. Grp ) |
| 71 | ffn | |- ( ( -g ` G ) : ( ( Base ` G ) X. ( Base ` G ) ) --> ( Base ` G ) -> ( -g ` G ) Fn ( ( Base ` G ) X. ( Base ` G ) ) ) |
|
| 72 | elpreima | |- ( ( -g ` G ) Fn ( ( Base ` G ) X. ( Base ` G ) ) -> ( <. x , y >. e. ( `' ( -g ` G ) " ( ( cls ` J ) ` S ) ) <-> ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. ( ( cls ` J ) ` S ) ) ) ) |
|
| 73 | 70 36 71 72 | 4syl | |- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ ( x e. ( ( cls ` J ) ` S ) /\ y e. ( ( cls ` J ) ` S ) ) ) -> ( <. x , y >. e. ( `' ( -g ` G ) " ( ( cls ` J ) ` S ) ) <-> ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. ( ( cls ` J ) ` S ) ) ) ) |
| 74 | 69 73 | mpbid | |- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ ( x e. ( ( cls ` J ) ` S ) /\ y e. ( ( cls ` J ) ` S ) ) ) -> ( <. x , y >. e. ( ( Base ` G ) X. ( Base ` G ) ) /\ ( ( -g ` G ) ` <. x , y >. ) e. ( ( cls ` J ) ` S ) ) ) |
| 75 | 74 | simprd | |- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ ( x e. ( ( cls ` J ) ` S ) /\ y e. ( ( cls ` J ) ` S ) ) ) -> ( ( -g ` G ) ` <. x , y >. ) e. ( ( cls ` J ) ` S ) ) |
| 76 | 24 75 | eqeltrid | |- ( ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) /\ ( x e. ( ( cls ` J ) ` S ) /\ y e. ( ( cls ` J ) ` S ) ) ) -> ( x ( -g ` G ) y ) e. ( ( cls ` J ) ` S ) ) |
| 77 | 76 | ralrimivva | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> A. x e. ( ( cls ` J ) ` S ) A. y e. ( ( cls ` J ) ` S ) ( x ( -g ` G ) y ) e. ( ( cls ` J ) ` S ) ) |
| 78 | 2 35 | issubg4 | |- ( G e. Grp -> ( ( ( cls ` J ) ` S ) e. ( SubGrp ` G ) <-> ( ( ( cls ` J ) ` S ) C_ ( Base ` G ) /\ ( ( cls ` J ) ` S ) =/= (/) /\ A. x e. ( ( cls ` J ) ` S ) A. y e. ( ( cls ` J ) ` S ) ( x ( -g ` G ) y ) e. ( ( cls ` J ) ` S ) ) ) ) |
| 79 | 34 78 | syl | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( ( cls ` J ) ` S ) e. ( SubGrp ` G ) <-> ( ( ( cls ` J ) ` S ) C_ ( Base ` G ) /\ ( ( cls ` J ) ` S ) =/= (/) /\ A. x e. ( ( cls ` J ) ` S ) A. y e. ( ( cls ` J ) ` S ) ( x ( -g ` G ) y ) e. ( ( cls ` J ) ` S ) ) ) ) |
| 80 | 15 23 77 79 | mpbir3and | |- ( ( G e. TopGrp /\ S e. ( SubGrp ` G ) ) -> ( ( cls ` J ) ` S ) e. ( SubGrp ` G ) ) |