This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One half of tgptsmscls , true in any commutative monoid topological space. (Contributed by Mario Carneiro, 21-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmscls.b | |- B = ( Base ` G ) |
|
| tsmscls.j | |- J = ( TopOpen ` G ) |
||
| tsmscls.1 | |- ( ph -> G e. CMnd ) |
||
| tsmscls.2 | |- ( ph -> G e. TopSp ) |
||
| tsmscls.a | |- ( ph -> A e. V ) |
||
| tsmscls.f | |- ( ph -> F : A --> B ) |
||
| tsmscls.x | |- ( ph -> X e. ( G tsums F ) ) |
||
| Assertion | tsmscls | |- ( ph -> ( ( cls ` J ) ` { X } ) C_ ( G tsums F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmscls.b | |- B = ( Base ` G ) |
|
| 2 | tsmscls.j | |- J = ( TopOpen ` G ) |
|
| 3 | tsmscls.1 | |- ( ph -> G e. CMnd ) |
|
| 4 | tsmscls.2 | |- ( ph -> G e. TopSp ) |
|
| 5 | tsmscls.a | |- ( ph -> A e. V ) |
|
| 6 | tsmscls.f | |- ( ph -> F : A --> B ) |
|
| 7 | tsmscls.x | |- ( ph -> X e. ( G tsums F ) ) |
|
| 8 | eqid | |- ( ~P A i^i Fin ) = ( ~P A i^i Fin ) |
|
| 9 | eqid | |- ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) = ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) |
|
| 10 | 1 2 8 9 4 5 6 | tsmsval | |- ( ph -> ( G tsums F ) = ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ` ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ) |
| 11 | 1 2 | istps | |- ( G e. TopSp <-> J e. ( TopOn ` B ) ) |
| 12 | 4 11 | sylib | |- ( ph -> J e. ( TopOn ` B ) ) |
| 13 | eqid | |- ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) = ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) |
|
| 14 | 8 13 9 5 | tsmsfbas | |- ( ph -> ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) e. ( fBas ` ( ~P A i^i Fin ) ) ) |
| 15 | fgcl | |- ( ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) e. ( fBas ` ( ~P A i^i Fin ) ) -> ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) ) |
|
| 16 | 14 15 | syl | |- ( ph -> ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) ) |
| 17 | 1 8 3 5 6 | tsmslem1 | |- ( ( ph /\ y e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` y ) ) e. B ) |
| 18 | 17 | fmpttd | |- ( ph -> ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) : ( ~P A i^i Fin ) --> B ) |
| 19 | flfval | |- ( ( J e. ( TopOn ` B ) /\ ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) e. ( Fil ` ( ~P A i^i Fin ) ) /\ ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) : ( ~P A i^i Fin ) --> B ) -> ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ` ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) = ( J fLim ( ( B FilMap ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ` ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ) ) |
|
| 20 | 12 16 18 19 | syl3anc | |- ( ph -> ( ( J fLimf ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ` ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) = ( J fLim ( ( B FilMap ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ` ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ) ) |
| 21 | 10 20 | eqtrd | |- ( ph -> ( G tsums F ) = ( J fLim ( ( B FilMap ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ` ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ) ) |
| 22 | 7 21 | eleqtrd | |- ( ph -> X e. ( J fLim ( ( B FilMap ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ` ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ) ) |
| 23 | flimsncls | |- ( X e. ( J fLim ( ( B FilMap ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ` ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ) -> ( ( cls ` J ) ` { X } ) C_ ( J fLim ( ( B FilMap ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ` ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ) ) |
|
| 24 | 22 23 | syl | |- ( ph -> ( ( cls ` J ) ` { X } ) C_ ( J fLim ( ( B FilMap ( y e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ` ( ( ~P A i^i Fin ) filGen ran ( x e. ( ~P A i^i Fin ) |-> { y e. ( ~P A i^i Fin ) | x C_ y } ) ) ) ) ) |
| 25 | 24 21 | sseqtrrd | |- ( ph -> ( ( cls ` J ) ` { X } ) C_ ( G tsums F ) ) |