This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014) (Proof shortened by SN, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0subg.z | |- .0. = ( 0g ` G ) |
|
| Assertion | 0subg | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0subg.z | |- .0. = ( 0g ` G ) |
|
| 2 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 3 | 1 | 0subm | |- ( G e. Mnd -> { .0. } e. ( SubMnd ` G ) ) |
| 4 | 2 3 | syl | |- ( G e. Grp -> { .0. } e. ( SubMnd ` G ) ) |
| 5 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 6 | 1 5 | grpinvid | |- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 7 | fvex | |- ( ( invg ` G ) ` .0. ) e. _V |
|
| 8 | 7 | elsn | |- ( ( ( invg ` G ) ` .0. ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) = .0. ) |
| 9 | 6 8 | sylibr | |- ( G e. Grp -> ( ( invg ` G ) ` .0. ) e. { .0. } ) |
| 10 | 1 | fvexi | |- .0. e. _V |
| 11 | fveq2 | |- ( a = .0. -> ( ( invg ` G ) ` a ) = ( ( invg ` G ) ` .0. ) ) |
|
| 12 | 11 | eleq1d | |- ( a = .0. -> ( ( ( invg ` G ) ` a ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) e. { .0. } ) ) |
| 13 | 10 12 | ralsn | |- ( A. a e. { .0. } ( ( invg ` G ) ` a ) e. { .0. } <-> ( ( invg ` G ) ` .0. ) e. { .0. } ) |
| 14 | 9 13 | sylibr | |- ( G e. Grp -> A. a e. { .0. } ( ( invg ` G ) ` a ) e. { .0. } ) |
| 15 | 5 | issubg3 | |- ( G e. Grp -> ( { .0. } e. ( SubGrp ` G ) <-> ( { .0. } e. ( SubMnd ` G ) /\ A. a e. { .0. } ( ( invg ` G ) ` a ) e. { .0. } ) ) ) |
| 16 | 4 14 15 | mpbir2and | |- ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) |