This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqgt0sr | |- ( ( A e. R. /\ A =/= 0R ) -> 0R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r | |- 0R e. R. |
|
| 2 | ltsosr | |- |
|
| 3 | sotrieq | |- ( ( |
|
| 4 | 2 3 | mpan | |- ( ( A e. R. /\ 0R e. R. ) -> ( A = 0R <-> -. ( A |
| 5 | 1 4 | mpan2 | |- ( A e. R. -> ( A = 0R <-> -. ( A |
| 6 | 5 | necon2abid | |- ( A e. R. -> ( ( A |
| 7 | m1r | |- -1R e. R. |
|
| 8 | mulclsr | |- ( ( A e. R. /\ -1R e. R. ) -> ( A .R -1R ) e. R. ) |
|
| 9 | 7 8 | mpan2 | |- ( A e. R. -> ( A .R -1R ) e. R. ) |
| 10 | ltasr | |- ( ( A .R -1R ) e. R. -> ( A |
|
| 11 | 9 10 | syl | |- ( A e. R. -> ( A |
| 12 | addcomsr | |- ( ( A .R -1R ) +R A ) = ( A +R ( A .R -1R ) ) |
|
| 13 | pn0sr | |- ( A e. R. -> ( A +R ( A .R -1R ) ) = 0R ) |
|
| 14 | 12 13 | eqtrid | |- ( A e. R. -> ( ( A .R -1R ) +R A ) = 0R ) |
| 15 | 0idsr | |- ( ( A .R -1R ) e. R. -> ( ( A .R -1R ) +R 0R ) = ( A .R -1R ) ) |
|
| 16 | 9 15 | syl | |- ( A e. R. -> ( ( A .R -1R ) +R 0R ) = ( A .R -1R ) ) |
| 17 | 14 16 | breq12d | |- ( A e. R. -> ( ( ( A .R -1R ) +R A ) |
| 18 | 11 17 | bitrd | |- ( A e. R. -> ( A |
| 19 | mulgt0sr | |- ( ( 0R |
|
| 20 | 19 | anidms | |- ( 0R |
| 21 | 18 20 | biimtrdi | |- ( A e. R. -> ( A |
| 22 | mulcomsr | |- ( -1R .R A ) = ( A .R -1R ) |
|
| 23 | 22 | oveq1i | |- ( ( -1R .R A ) .R -1R ) = ( ( A .R -1R ) .R -1R ) |
| 24 | mulasssr | |- ( ( -1R .R A ) .R -1R ) = ( -1R .R ( A .R -1R ) ) |
|
| 25 | mulasssr | |- ( ( A .R -1R ) .R -1R ) = ( A .R ( -1R .R -1R ) ) |
|
| 26 | 23 24 25 | 3eqtr3i | |- ( -1R .R ( A .R -1R ) ) = ( A .R ( -1R .R -1R ) ) |
| 27 | m1m1sr | |- ( -1R .R -1R ) = 1R |
|
| 28 | 27 | oveq2i | |- ( A .R ( -1R .R -1R ) ) = ( A .R 1R ) |
| 29 | 26 28 | eqtri | |- ( -1R .R ( A .R -1R ) ) = ( A .R 1R ) |
| 30 | 29 | oveq2i | |- ( A .R ( -1R .R ( A .R -1R ) ) ) = ( A .R ( A .R 1R ) ) |
| 31 | mulasssr | |- ( ( A .R -1R ) .R ( A .R -1R ) ) = ( A .R ( -1R .R ( A .R -1R ) ) ) |
|
| 32 | mulasssr | |- ( ( A .R A ) .R 1R ) = ( A .R ( A .R 1R ) ) |
|
| 33 | 30 31 32 | 3eqtr4i | |- ( ( A .R -1R ) .R ( A .R -1R ) ) = ( ( A .R A ) .R 1R ) |
| 34 | mulclsr | |- ( ( A e. R. /\ A e. R. ) -> ( A .R A ) e. R. ) |
|
| 35 | 1idsr | |- ( ( A .R A ) e. R. -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) |
|
| 36 | 34 35 | syl | |- ( ( A e. R. /\ A e. R. ) -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) |
| 37 | 36 | anidms | |- ( A e. R. -> ( ( A .R A ) .R 1R ) = ( A .R A ) ) |
| 38 | 33 37 | eqtrid | |- ( A e. R. -> ( ( A .R -1R ) .R ( A .R -1R ) ) = ( A .R A ) ) |
| 39 | 38 | breq2d | |- ( A e. R. -> ( 0R |
| 40 | 21 39 | sylibd | |- ( A e. R. -> ( A |
| 41 | mulgt0sr | |- ( ( 0R |
|
| 42 | 41 | anidms | |- ( 0R |
| 43 | 42 | a1i | |- ( A e. R. -> ( 0R |
| 44 | 40 43 | jaod | |- ( A e. R. -> ( ( A |
| 45 | 6 44 | sylbird | |- ( A e. R. -> ( A =/= 0R -> 0R |
| 46 | 45 | imp | |- ( ( A e. R. /\ A =/= 0R ) -> 0R |