This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgt0sr | |- ( ( 0R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelsr | |- |
|
| 2 | 1 | brel | |- ( 0R |
| 3 | 2 | simprd | |- ( 0R |
| 4 | 1 | brel | |- ( 0R |
| 5 | 4 | simprd | |- ( 0R |
| 6 | 3 5 | anim12i | |- ( ( 0R |
| 7 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 8 | breq2 | |- ( [ <. x , y >. ] ~R = A -> ( 0R |
|
| 9 | 8 | anbi1d | |- ( [ <. x , y >. ] ~R = A -> ( ( 0R |
| 10 | oveq1 | |- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = ( A .R [ <. z , w >. ] ~R ) ) |
|
| 11 | 10 | breq2d | |- ( [ <. x , y >. ] ~R = A -> ( 0R |
| 12 | 9 11 | imbi12d | |- ( [ <. x , y >. ] ~R = A -> ( ( ( 0R |
| 13 | breq2 | |- ( [ <. z , w >. ] ~R = B -> ( 0R |
|
| 14 | 13 | anbi2d | |- ( [ <. z , w >. ] ~R = B -> ( ( 0R |
| 15 | oveq2 | |- ( [ <. z , w >. ] ~R = B -> ( A .R [ <. z , w >. ] ~R ) = ( A .R B ) ) |
|
| 16 | 15 | breq2d | |- ( [ <. z , w >. ] ~R = B -> ( 0R |
| 17 | 14 16 | imbi12d | |- ( [ <. z , w >. ] ~R = B -> ( ( ( 0R |
| 18 | gt0srpr | |- ( 0R |
|
| 19 | gt0srpr | |- ( 0R |
|
| 20 | 18 19 | anbi12i | |- ( ( 0R |
| 21 | simprr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> w e. P. ) |
|
| 22 | mulclpr | |- ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. ) |
|
| 23 | mulclpr | |- ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. ) |
|
| 24 | addclpr | |- ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
|
| 25 | 22 23 24 | syl2an | |- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 26 | 25 | an4s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 27 | ltexpri | |- ( y |
|
| 28 | ltexpri | |- ( w |
|
| 29 | mulclpr | |- ( ( v e. P. /\ w e. P. ) -> ( v .P. w ) e. P. ) |
|
| 30 | oveq12 | |- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( y +P. v ) .P. ( w +P. u ) ) = ( x .P. z ) ) |
|
| 31 | 30 | oveq1d | |- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( ( y +P. v ) .P. ( w +P. u ) ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) ) |
| 32 | distrpr | |- ( y .P. ( w +P. u ) ) = ( ( y .P. w ) +P. ( y .P. u ) ) |
|
| 33 | oveq2 | |- ( ( w +P. u ) = z -> ( y .P. ( w +P. u ) ) = ( y .P. z ) ) |
|
| 34 | 32 33 | eqtr3id | |- ( ( w +P. u ) = z -> ( ( y .P. w ) +P. ( y .P. u ) ) = ( y .P. z ) ) |
| 35 | 34 | oveq1d | |- ( ( w +P. u ) = z -> ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) = ( ( y .P. z ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) ) |
| 36 | vex | |- y e. _V |
|
| 37 | vex | |- v e. _V |
|
| 38 | vex | |- w e. _V |
|
| 39 | mulcompr | |- ( f .P. g ) = ( g .P. f ) |
|
| 40 | distrpr | |- ( f .P. ( g +P. h ) ) = ( ( f .P. g ) +P. ( f .P. h ) ) |
|
| 41 | 36 37 38 39 40 | caovdir | |- ( ( y +P. v ) .P. w ) = ( ( y .P. w ) +P. ( v .P. w ) ) |
| 42 | vex | |- u e. _V |
|
| 43 | 36 37 42 39 40 | caovdir | |- ( ( y +P. v ) .P. u ) = ( ( y .P. u ) +P. ( v .P. u ) ) |
| 44 | 41 43 | oveq12i | |- ( ( ( y +P. v ) .P. w ) +P. ( ( y +P. v ) .P. u ) ) = ( ( ( y .P. w ) +P. ( v .P. w ) ) +P. ( ( y .P. u ) +P. ( v .P. u ) ) ) |
| 45 | distrpr | |- ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( ( y +P. v ) .P. w ) +P. ( ( y +P. v ) .P. u ) ) |
|
| 46 | ovex | |- ( y .P. w ) e. _V |
|
| 47 | ovex | |- ( y .P. u ) e. _V |
|
| 48 | ovex | |- ( v .P. w ) e. _V |
|
| 49 | addcompr | |- ( f +P. g ) = ( g +P. f ) |
|
| 50 | addasspr | |- ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) ) |
|
| 51 | ovex | |- ( v .P. u ) e. _V |
|
| 52 | 46 47 48 49 50 51 | caov4 | |- ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) = ( ( ( y .P. w ) +P. ( v .P. w ) ) +P. ( ( y .P. u ) +P. ( v .P. u ) ) ) |
| 53 | 44 45 52 | 3eqtr4i | |- ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) |
| 54 | ovex | |- ( y .P. z ) e. _V |
|
| 55 | 48 54 51 49 50 | caov12 | |- ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) = ( ( y .P. z ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) |
| 56 | 35 53 55 | 3eqtr4g | |- ( ( w +P. u ) = z -> ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) ) |
| 57 | oveq1 | |- ( ( y +P. v ) = x -> ( ( y +P. v ) .P. w ) = ( x .P. w ) ) |
|
| 58 | 41 57 | eqtr3id | |- ( ( y +P. v ) = x -> ( ( y .P. w ) +P. ( v .P. w ) ) = ( x .P. w ) ) |
| 59 | 56 58 | oveqan12rd | |- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( ( y +P. v ) .P. ( w +P. u ) ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) ) |
| 60 | 31 59 | eqtr3d | |- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) ) |
| 61 | addasspr | |- ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( v .P. w ) ) = ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) |
|
| 62 | addcompr | |- ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( v .P. w ) ) = ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) |
|
| 63 | 61 62 | eqtr3i | |- ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) |
| 64 | addasspr | |- ( ( ( v .P. w ) +P. ( x .P. w ) ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) = ( ( v .P. w ) +P. ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) ) |
|
| 65 | ovex | |- ( ( y .P. z ) +P. ( v .P. u ) ) e. _V |
|
| 66 | ovex | |- ( x .P. w ) e. _V |
|
| 67 | 48 65 66 49 50 | caov32 | |- ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) = ( ( ( v .P. w ) +P. ( x .P. w ) ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) |
| 68 | addasspr | |- ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) |
|
| 69 | 68 | oveq2i | |- ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) = ( ( v .P. w ) +P. ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) ) |
| 70 | 64 67 69 | 3eqtr4i | |- ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) |
| 71 | 60 63 70 | 3eqtr3g | |- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) ) |
| 72 | addcanpr | |- ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) ) |
|
| 73 | 71 72 | syl5 | |- ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) ) |
| 74 | eqcom | |- ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) <-> ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. z ) +P. ( y .P. w ) ) ) |
|
| 75 | ltaddpr2 | |- ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. -> ( ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. z ) +P. ( y .P. w ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
|
| 76 | 74 75 | biimtrid | |- ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. -> ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 77 | 76 | adantl | |- ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 78 | 73 77 | syld | |- ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 79 | 29 78 | sylan | |- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 80 | 79 | a1d | |- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 81 | 80 | exp4a | |- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( y +P. v ) = x -> ( ( w +P. u ) = z -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 82 | 81 | com34 | |- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 83 | 82 | rexlimdv | |- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( E. u e. P. ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 84 | 83 | expl | |- ( v e. P. -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( E. u e. P. ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 85 | 84 | com24 | |- ( v e. P. -> ( ( y +P. v ) = x -> ( E. u e. P. ( w +P. u ) = z -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 86 | 85 | rexlimiv | |- ( E. v e. P. ( y +P. v ) = x -> ( E. u e. P. ( w +P. u ) = z -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
| 87 | 27 28 86 | syl2im | |- ( y |
| 88 | 87 | imp | |- ( ( y |
| 89 | 88 | com12 | |- ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( y |
| 90 | 21 26 89 | syl2anc | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( y |
| 91 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
|
| 92 | 91 | breq2d | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( 0R |
| 93 | gt0srpr | |- ( 0R |
|
| 94 | 92 93 | bitrdi | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( 0R |
| 95 | 90 94 | sylibrd | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( y |
| 96 | 20 95 | biimtrid | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( 0R |
| 97 | 7 12 17 96 | 2ecoptocl | |- ( ( A e. R. /\ B e. R. ) -> ( ( 0R |
| 98 | 6 97 | mpcom | |- ( ( 0R |