This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulclsr | |- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) e. R. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | oveq1 | |- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = ( A .R [ <. z , w >. ] ~R ) ) |
|
| 3 | 2 | eleq1d | |- ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) <-> ( A .R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) ) ) |
| 4 | oveq2 | |- ( [ <. z , w >. ] ~R = B -> ( A .R [ <. z , w >. ] ~R ) = ( A .R B ) ) |
|
| 5 | 4 | eleq1d | |- ( [ <. z , w >. ] ~R = B -> ( ( A .R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) <-> ( A .R B ) e. ( ( P. X. P. ) /. ~R ) ) ) |
| 6 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
|
| 7 | mulclpr | |- ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. ) |
|
| 8 | mulclpr | |- ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. ) |
|
| 9 | addclpr | |- ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 11 | 10 | an4s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 12 | mulclpr | |- ( ( x e. P. /\ w e. P. ) -> ( x .P. w ) e. P. ) |
|
| 13 | mulclpr | |- ( ( y e. P. /\ z e. P. ) -> ( y .P. z ) e. P. ) |
|
| 14 | addclpr | |- ( ( ( x .P. w ) e. P. /\ ( y .P. z ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 16 | 15 | an42s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 17 | 11 16 | jca | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) ) |
| 18 | opelxpi | |- ( ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) -> <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. e. ( P. X. P. ) ) |
|
| 19 | enrex | |- ~R e. _V |
|
| 20 | 19 | ecelqsi | |- ( <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. e. ( P. X. P. ) -> [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 21 | 17 18 20 | 3syl | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 22 | 6 21 | eqeltrd | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) ) |
| 23 | 1 3 5 22 | 2ecoptocl | |- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) e. ( ( P. X. P. ) /. ~R ) ) |
| 24 | 23 1 | eleqtrrdi | |- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) e. R. ) |