This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcomsr | |- ( A +R B ) = ( B +R A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | addsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) = [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R ) |
|
| 3 | addsrpr | |- ( ( ( z e. P. /\ w e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( [ <. z , w >. ] ~R +R [ <. x , y >. ] ~R ) = [ <. ( z +P. x ) , ( w +P. y ) >. ] ~R ) |
|
| 4 | addcompr | |- ( x +P. z ) = ( z +P. x ) |
|
| 5 | addcompr | |- ( y +P. w ) = ( w +P. y ) |
|
| 6 | 1 2 3 4 5 | ecovcom | |- ( ( A e. R. /\ B e. R. ) -> ( A +R B ) = ( B +R A ) ) |
| 7 | dmaddsr | |- dom +R = ( R. X. R. ) |
|
| 8 | 7 | ndmovcom | |- ( -. ( A e. R. /\ B e. R. ) -> ( A +R B ) = ( B +R A ) ) |
| 9 | 6 8 | pm2.61i | |- ( A +R B ) = ( B +R A ) |