This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sotrieq | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C <-> -. ( B R C \/ C R B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sonr | |- ( ( R Or A /\ B e. A ) -> -. B R B ) |
|
| 2 | 1 | adantrr | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> -. B R B ) |
| 3 | pm1.2 | |- ( ( B R B \/ B R B ) -> B R B ) |
|
| 4 | 2 3 | nsyl | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> -. ( B R B \/ B R B ) ) |
| 5 | breq2 | |- ( B = C -> ( B R B <-> B R C ) ) |
|
| 6 | breq1 | |- ( B = C -> ( B R B <-> C R B ) ) |
|
| 7 | 5 6 | orbi12d | |- ( B = C -> ( ( B R B \/ B R B ) <-> ( B R C \/ C R B ) ) ) |
| 8 | 7 | notbid | |- ( B = C -> ( -. ( B R B \/ B R B ) <-> -. ( B R C \/ C R B ) ) ) |
| 9 | 4 8 | syl5ibcom | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C -> -. ( B R C \/ C R B ) ) ) |
| 10 | 9 | con2d | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( ( B R C \/ C R B ) -> -. B = C ) ) |
| 11 | solin | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) ) |
|
| 12 | 3orass | |- ( ( B R C \/ B = C \/ C R B ) <-> ( B R C \/ ( B = C \/ C R B ) ) ) |
|
| 13 | 11 12 | sylib | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ ( B = C \/ C R B ) ) ) |
| 14 | or12 | |- ( ( B R C \/ ( B = C \/ C R B ) ) <-> ( B = C \/ ( B R C \/ C R B ) ) ) |
|
| 15 | 13 14 | sylib | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C \/ ( B R C \/ C R B ) ) ) |
| 16 | 15 | ord | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( -. B = C -> ( B R C \/ C R B ) ) ) |
| 17 | 10 16 | impbid | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( ( B R C \/ C R B ) <-> -. B = C ) ) |
| 18 | 17 | con2bid | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C <-> -. ( B R C \/ C R B ) ) ) |