This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulasssr | |- ( ( A .R B ) .R C ) = ( A .R ( B .R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
|
| 3 | mulsrpr | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. z , w >. ] ~R .R [ <. v , u >. ] ~R ) = [ <. ( ( z .P. v ) +P. ( w .P. u ) ) , ( ( z .P. u ) +P. ( w .P. v ) ) >. ] ~R ) |
|
| 4 | mulsrpr | |- ( ( ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R .R [ <. v , u >. ] ~R ) = [ <. ( ( ( ( x .P. z ) +P. ( y .P. w ) ) .P. v ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) .P. u ) ) , ( ( ( ( x .P. z ) +P. ( y .P. w ) ) .P. u ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) .P. v ) ) >. ] ~R ) |
|
| 5 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( ( ( z .P. v ) +P. ( w .P. u ) ) e. P. /\ ( ( z .P. u ) +P. ( w .P. v ) ) e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. ( ( z .P. v ) +P. ( w .P. u ) ) , ( ( z .P. u ) +P. ( w .P. v ) ) >. ] ~R ) = [ <. ( ( x .P. ( ( z .P. v ) +P. ( w .P. u ) ) ) +P. ( y .P. ( ( z .P. u ) +P. ( w .P. v ) ) ) ) , ( ( x .P. ( ( z .P. u ) +P. ( w .P. v ) ) ) +P. ( y .P. ( ( z .P. v ) +P. ( w .P. u ) ) ) ) >. ] ~R ) |
|
| 6 | mulclpr | |- ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. ) |
|
| 7 | mulclpr | |- ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. ) |
|
| 8 | addclpr | |- ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 10 | 9 | an4s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 11 | mulclpr | |- ( ( x e. P. /\ w e. P. ) -> ( x .P. w ) e. P. ) |
|
| 12 | mulclpr | |- ( ( y e. P. /\ z e. P. ) -> ( y .P. z ) e. P. ) |
|
| 13 | addclpr | |- ( ( ( x .P. w ) e. P. /\ ( y .P. z ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 15 | 14 | an42s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 16 | 10 15 | jca | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) ) |
| 17 | mulclpr | |- ( ( z e. P. /\ v e. P. ) -> ( z .P. v ) e. P. ) |
|
| 18 | mulclpr | |- ( ( w e. P. /\ u e. P. ) -> ( w .P. u ) e. P. ) |
|
| 19 | addclpr | |- ( ( ( z .P. v ) e. P. /\ ( w .P. u ) e. P. ) -> ( ( z .P. v ) +P. ( w .P. u ) ) e. P. ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( ( z e. P. /\ v e. P. ) /\ ( w e. P. /\ u e. P. ) ) -> ( ( z .P. v ) +P. ( w .P. u ) ) e. P. ) |
| 21 | 20 | an4s | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( z .P. v ) +P. ( w .P. u ) ) e. P. ) |
| 22 | mulclpr | |- ( ( z e. P. /\ u e. P. ) -> ( z .P. u ) e. P. ) |
|
| 23 | mulclpr | |- ( ( w e. P. /\ v e. P. ) -> ( w .P. v ) e. P. ) |
|
| 24 | addclpr | |- ( ( ( z .P. u ) e. P. /\ ( w .P. v ) e. P. ) -> ( ( z .P. u ) +P. ( w .P. v ) ) e. P. ) |
|
| 25 | 22 23 24 | syl2an | |- ( ( ( z e. P. /\ u e. P. ) /\ ( w e. P. /\ v e. P. ) ) -> ( ( z .P. u ) +P. ( w .P. v ) ) e. P. ) |
| 26 | 25 | an42s | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( z .P. u ) +P. ( w .P. v ) ) e. P. ) |
| 27 | 21 26 | jca | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( ( z .P. v ) +P. ( w .P. u ) ) e. P. /\ ( ( z .P. u ) +P. ( w .P. v ) ) e. P. ) ) |
| 28 | vex | |- x e. _V |
|
| 29 | vex | |- y e. _V |
|
| 30 | vex | |- z e. _V |
|
| 31 | mulcompr | |- ( f .P. g ) = ( g .P. f ) |
|
| 32 | distrpr | |- ( f .P. ( g +P. h ) ) = ( ( f .P. g ) +P. ( f .P. h ) ) |
|
| 33 | vex | |- w e. _V |
|
| 34 | vex | |- v e. _V |
|
| 35 | mulasspr | |- ( ( f .P. g ) .P. h ) = ( f .P. ( g .P. h ) ) |
|
| 36 | vex | |- u e. _V |
|
| 37 | addcompr | |- ( f +P. g ) = ( g +P. f ) |
|
| 38 | addasspr | |- ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) ) |
|
| 39 | 28 29 30 31 32 33 34 35 36 37 38 | caovlem2 | |- ( ( ( ( x .P. z ) +P. ( y .P. w ) ) .P. v ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) .P. u ) ) = ( ( x .P. ( ( z .P. v ) +P. ( w .P. u ) ) ) +P. ( y .P. ( ( z .P. u ) +P. ( w .P. v ) ) ) ) |
| 40 | 28 29 30 31 32 33 36 35 34 37 38 | caovlem2 | |- ( ( ( ( x .P. z ) +P. ( y .P. w ) ) .P. u ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) .P. v ) ) = ( ( x .P. ( ( z .P. u ) +P. ( w .P. v ) ) ) +P. ( y .P. ( ( z .P. v ) +P. ( w .P. u ) ) ) ) |
| 41 | 1 2 3 4 5 16 27 39 40 | ecovass | |- ( ( A e. R. /\ B e. R. /\ C e. R. ) -> ( ( A .R B ) .R C ) = ( A .R ( B .R C ) ) ) |
| 42 | dmmulsr | |- dom .R = ( R. X. R. ) |
|
| 43 | 0nsr | |- -. (/) e. R. |
|
| 44 | 42 43 | ndmovass | |- ( -. ( A e. R. /\ B e. R. /\ C e. R. ) -> ( ( A .R B ) .R C ) = ( A .R ( B .R C ) ) ) |
| 45 | 41 44 | pm2.61i | |- ( ( A .R B ) .R C ) = ( A .R ( B .R C ) ) |