This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0idsr | |- ( A e. R. -> ( A +R 0R ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | oveq1 | |- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R +R 0R ) = ( A +R 0R ) ) |
|
| 3 | id | |- ( [ <. x , y >. ] ~R = A -> [ <. x , y >. ] ~R = A ) |
|
| 4 | 2 3 | eqeq12d | |- ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R +R 0R ) = [ <. x , y >. ] ~R <-> ( A +R 0R ) = A ) ) |
| 5 | df-0r | |- 0R = [ <. 1P , 1P >. ] ~R |
|
| 6 | 5 | oveq2i | |- ( [ <. x , y >. ] ~R +R 0R ) = ( [ <. x , y >. ] ~R +R [ <. 1P , 1P >. ] ~R ) |
| 7 | 1pr | |- 1P e. P. |
|
| 8 | addsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( 1P e. P. /\ 1P e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. 1P , 1P >. ] ~R ) = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R ) |
|
| 9 | 7 7 8 | mpanr12 | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R +R [ <. 1P , 1P >. ] ~R ) = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R ) |
| 10 | addclpr | |- ( ( x e. P. /\ 1P e. P. ) -> ( x +P. 1P ) e. P. ) |
|
| 11 | 7 10 | mpan2 | |- ( x e. P. -> ( x +P. 1P ) e. P. ) |
| 12 | addclpr | |- ( ( y e. P. /\ 1P e. P. ) -> ( y +P. 1P ) e. P. ) |
|
| 13 | 7 12 | mpan2 | |- ( y e. P. -> ( y +P. 1P ) e. P. ) |
| 14 | 11 13 | anim12i | |- ( ( x e. P. /\ y e. P. ) -> ( ( x +P. 1P ) e. P. /\ ( y +P. 1P ) e. P. ) ) |
| 15 | vex | |- x e. _V |
|
| 16 | vex | |- y e. _V |
|
| 17 | 7 | elexi | |- 1P e. _V |
| 18 | addcompr | |- ( z +P. w ) = ( w +P. z ) |
|
| 19 | addasspr | |- ( ( z +P. w ) +P. v ) = ( z +P. ( w +P. v ) ) |
|
| 20 | 15 16 17 18 19 | caov12 | |- ( x +P. ( y +P. 1P ) ) = ( y +P. ( x +P. 1P ) ) |
| 21 | enreceq | |- ( ( ( x e. P. /\ y e. P. ) /\ ( ( x +P. 1P ) e. P. /\ ( y +P. 1P ) e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R <-> ( x +P. ( y +P. 1P ) ) = ( y +P. ( x +P. 1P ) ) ) ) |
|
| 22 | 20 21 | mpbiri | |- ( ( ( x e. P. /\ y e. P. ) /\ ( ( x +P. 1P ) e. P. /\ ( y +P. 1P ) e. P. ) ) -> [ <. x , y >. ] ~R = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R ) |
| 23 | 14 22 | mpdan | |- ( ( x e. P. /\ y e. P. ) -> [ <. x , y >. ] ~R = [ <. ( x +P. 1P ) , ( y +P. 1P ) >. ] ~R ) |
| 24 | 9 23 | eqtr4d | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R +R [ <. 1P , 1P >. ] ~R ) = [ <. x , y >. ] ~R ) |
| 25 | 6 24 | eqtrid | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R +R 0R ) = [ <. x , y >. ] ~R ) |
| 26 | 1 4 25 | ecoptocl | |- ( A e. R. -> ( A +R 0R ) = A ) |