This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1m1sr | |- ( -1R .R -1R ) = 1R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-m1r | |- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
|
| 2 | 1 1 | oveq12i | |- ( -1R .R -1R ) = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) |
| 3 | df-1r | |- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
|
| 4 | 1pr | |- 1P e. P. |
|
| 5 | addclpr | |- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
|
| 6 | 4 4 5 | mp2an | |- ( 1P +P. 1P ) e. P. |
| 7 | mulsrpr | |- ( ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) /\ ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) ) -> ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R ) |
|
| 8 | 4 6 4 6 7 | mp4an | |- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R |
| 9 | addasspr | |- ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) ) |
|
| 10 | 1idpr | |- ( 1P e. P. -> ( 1P .P. 1P ) = 1P ) |
|
| 11 | 4 10 | ax-mp | |- ( 1P .P. 1P ) = 1P |
| 12 | distrpr | |- ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) = ( ( ( 1P +P. 1P ) .P. 1P ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) |
|
| 13 | mulcompr | |- ( 1P .P. ( 1P +P. 1P ) ) = ( ( 1P +P. 1P ) .P. 1P ) |
|
| 14 | 13 | oveq1i | |- ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) = ( ( ( 1P +P. 1P ) .P. 1P ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) |
| 15 | 12 14 | eqtr4i | |- ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) = ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) |
| 16 | 11 15 | oveq12i | |- ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) |
| 17 | 16 | oveq2i | |- ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) = ( 1P +P. ( 1P +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) ) |
| 18 | 9 17 | eqtr4i | |- ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) |
| 19 | mulclpr | |- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P .P. 1P ) e. P. ) |
|
| 20 | 4 4 19 | mp2an | |- ( 1P .P. 1P ) e. P. |
| 21 | mulclpr | |- ( ( ( 1P +P. 1P ) e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. ) |
|
| 22 | 6 6 21 | mp2an | |- ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. |
| 23 | addclpr | |- ( ( ( 1P .P. 1P ) e. P. /\ ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) e. P. ) -> ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. ) |
|
| 24 | 20 22 23 | mp2an | |- ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. |
| 25 | mulclpr | |- ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( 1P .P. ( 1P +P. 1P ) ) e. P. ) |
|
| 26 | 4 6 25 | mp2an | |- ( 1P .P. ( 1P +P. 1P ) ) e. P. |
| 27 | mulclpr | |- ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) -> ( ( 1P +P. 1P ) .P. 1P ) e. P. ) |
|
| 28 | 6 4 27 | mp2an | |- ( ( 1P +P. 1P ) .P. 1P ) e. P. |
| 29 | addclpr | |- ( ( ( 1P .P. ( 1P +P. 1P ) ) e. P. /\ ( ( 1P +P. 1P ) .P. 1P ) e. P. ) -> ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. ) |
|
| 30 | 26 28 29 | mp2an | |- ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. |
| 31 | enreceq | |- ( ( ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) /\ ( ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) e. P. /\ ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) e. P. ) ) -> ( [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R <-> ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) ) ) |
|
| 32 | 6 4 24 30 31 | mp4an | |- ( [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R <-> ( ( 1P +P. 1P ) +P. ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) ) = ( 1P +P. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) ) ) |
| 33 | 18 32 | mpbir | |- [ <. ( 1P +P. 1P ) , 1P >. ] ~R = [ <. ( ( 1P .P. 1P ) +P. ( ( 1P +P. 1P ) .P. ( 1P +P. 1P ) ) ) , ( ( 1P .P. ( 1P +P. 1P ) ) +P. ( ( 1P +P. 1P ) .P. 1P ) ) >. ] ~R |
| 34 | 8 33 | eqtr4i | |- ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
| 35 | 3 34 | eqtr4i | |- 1R = ( [ <. 1P , ( 1P +P. 1P ) >. ] ~R .R [ <. 1P , ( 1P +P. 1P ) >. ] ~R ) |
| 36 | 2 35 | eqtr4i | |- ( -1R .R -1R ) = 1R |