This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcomsr | |- ( A .R B ) = ( B .R A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
|
| 3 | mulsrpr | |- ( ( ( z e. P. /\ w e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( [ <. z , w >. ] ~R .R [ <. x , y >. ] ~R ) = [ <. ( ( z .P. x ) +P. ( w .P. y ) ) , ( ( z .P. y ) +P. ( w .P. x ) ) >. ] ~R ) |
|
| 4 | mulcompr | |- ( x .P. z ) = ( z .P. x ) |
|
| 5 | mulcompr | |- ( y .P. w ) = ( w .P. y ) |
|
| 6 | 4 5 | oveq12i | |- ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( z .P. x ) +P. ( w .P. y ) ) |
| 7 | mulcompr | |- ( x .P. w ) = ( w .P. x ) |
|
| 8 | mulcompr | |- ( y .P. z ) = ( z .P. y ) |
|
| 9 | 7 8 | oveq12i | |- ( ( x .P. w ) +P. ( y .P. z ) ) = ( ( w .P. x ) +P. ( z .P. y ) ) |
| 10 | addcompr | |- ( ( w .P. x ) +P. ( z .P. y ) ) = ( ( z .P. y ) +P. ( w .P. x ) ) |
|
| 11 | 9 10 | eqtri | |- ( ( x .P. w ) +P. ( y .P. z ) ) = ( ( z .P. y ) +P. ( w .P. x ) ) |
| 12 | 1 2 3 6 11 | ecovcom | |- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) = ( B .R A ) ) |
| 13 | dmmulsr | |- dom .R = ( R. X. R. ) |
|
| 14 | 13 | ndmovcom | |- ( -. ( A e. R. /\ B e. R. ) -> ( A .R B ) = ( B .R A ) ) |
| 15 | 12 14 | pm2.61i | |- ( A .R B ) = ( B .R A ) |