This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1 is an identity element for multiplication. (Contributed by NM, 2-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1idsr | |- ( A e. R. -> ( A .R 1R ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | oveq1 | |- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R .R 1R ) = ( A .R 1R ) ) |
|
| 3 | id | |- ( [ <. x , y >. ] ~R = A -> [ <. x , y >. ] ~R = A ) |
|
| 4 | 2 3 | eqeq12d | |- ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R .R 1R ) = [ <. x , y >. ] ~R <-> ( A .R 1R ) = A ) ) |
| 5 | df-1r | |- 1R = [ <. ( 1P +P. 1P ) , 1P >. ] ~R |
|
| 6 | 5 | oveq2i | |- ( [ <. x , y >. ] ~R .R 1R ) = ( [ <. x , y >. ] ~R .R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) |
| 7 | 1pr | |- 1P e. P. |
|
| 8 | addclpr | |- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
|
| 9 | 7 7 8 | mp2an | |- ( 1P +P. 1P ) e. P. |
| 10 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( ( 1P +P. 1P ) e. P. /\ 1P e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R ) |
|
| 11 | 9 7 10 | mpanr12 | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R ) |
| 12 | distrpr | |- ( x .P. ( 1P +P. 1P ) ) = ( ( x .P. 1P ) +P. ( x .P. 1P ) ) |
|
| 13 | 1idpr | |- ( x e. P. -> ( x .P. 1P ) = x ) |
|
| 14 | 13 | oveq1d | |- ( x e. P. -> ( ( x .P. 1P ) +P. ( x .P. 1P ) ) = ( x +P. ( x .P. 1P ) ) ) |
| 15 | 12 14 | eqtr2id | |- ( x e. P. -> ( x +P. ( x .P. 1P ) ) = ( x .P. ( 1P +P. 1P ) ) ) |
| 16 | distrpr | |- ( y .P. ( 1P +P. 1P ) ) = ( ( y .P. 1P ) +P. ( y .P. 1P ) ) |
|
| 17 | 1idpr | |- ( y e. P. -> ( y .P. 1P ) = y ) |
|
| 18 | 17 | oveq1d | |- ( y e. P. -> ( ( y .P. 1P ) +P. ( y .P. 1P ) ) = ( y +P. ( y .P. 1P ) ) ) |
| 19 | 16 18 | eqtrid | |- ( y e. P. -> ( y .P. ( 1P +P. 1P ) ) = ( y +P. ( y .P. 1P ) ) ) |
| 20 | 15 19 | oveqan12d | |- ( ( x e. P. /\ y e. P. ) -> ( ( x +P. ( x .P. 1P ) ) +P. ( y .P. ( 1P +P. 1P ) ) ) = ( ( x .P. ( 1P +P. 1P ) ) +P. ( y +P. ( y .P. 1P ) ) ) ) |
| 21 | addasspr | |- ( ( x +P. ( x .P. 1P ) ) +P. ( y .P. ( 1P +P. 1P ) ) ) = ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) |
|
| 22 | ovex | |- ( x .P. ( 1P +P. 1P ) ) e. _V |
|
| 23 | vex | |- y e. _V |
|
| 24 | ovex | |- ( y .P. 1P ) e. _V |
|
| 25 | addcompr | |- ( z +P. w ) = ( w +P. z ) |
|
| 26 | addasspr | |- ( ( z +P. w ) +P. v ) = ( z +P. ( w +P. v ) ) |
|
| 27 | 22 23 24 25 26 | caov12 | |- ( ( x .P. ( 1P +P. 1P ) ) +P. ( y +P. ( y .P. 1P ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) |
| 28 | 20 21 27 | 3eqtr3g | |- ( ( x e. P. /\ y e. P. ) -> ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) ) |
| 29 | mulclpr | |- ( ( x e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( x .P. ( 1P +P. 1P ) ) e. P. ) |
|
| 30 | 9 29 | mpan2 | |- ( x e. P. -> ( x .P. ( 1P +P. 1P ) ) e. P. ) |
| 31 | mulclpr | |- ( ( y e. P. /\ 1P e. P. ) -> ( y .P. 1P ) e. P. ) |
|
| 32 | 7 31 | mpan2 | |- ( y e. P. -> ( y .P. 1P ) e. P. ) |
| 33 | addclpr | |- ( ( ( x .P. ( 1P +P. 1P ) ) e. P. /\ ( y .P. 1P ) e. P. ) -> ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) e. P. ) |
|
| 34 | 30 32 33 | syl2an | |- ( ( x e. P. /\ y e. P. ) -> ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) e. P. ) |
| 35 | mulclpr | |- ( ( x e. P. /\ 1P e. P. ) -> ( x .P. 1P ) e. P. ) |
|
| 36 | 7 35 | mpan2 | |- ( x e. P. -> ( x .P. 1P ) e. P. ) |
| 37 | mulclpr | |- ( ( y e. P. /\ ( 1P +P. 1P ) e. P. ) -> ( y .P. ( 1P +P. 1P ) ) e. P. ) |
|
| 38 | 9 37 | mpan2 | |- ( y e. P. -> ( y .P. ( 1P +P. 1P ) ) e. P. ) |
| 39 | addclpr | |- ( ( ( x .P. 1P ) e. P. /\ ( y .P. ( 1P +P. 1P ) ) e. P. ) -> ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) e. P. ) |
|
| 40 | 36 38 39 | syl2an | |- ( ( x e. P. /\ y e. P. ) -> ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) e. P. ) |
| 41 | 34 40 | anim12i | |- ( ( ( x e. P. /\ y e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) e. P. /\ ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) e. P. ) ) |
| 42 | enreceq | |- ( ( ( x e. P. /\ y e. P. ) /\ ( ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) e. P. /\ ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R <-> ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) ) ) |
|
| 43 | 41 42 | syldan | |- ( ( ( x e. P. /\ y e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R <-> ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) ) ) |
| 44 | 43 | anidms | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R <-> ( x +P. ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) ) = ( y +P. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) ) ) ) |
| 45 | 28 44 | mpbird | |- ( ( x e. P. /\ y e. P. ) -> [ <. x , y >. ] ~R = [ <. ( ( x .P. ( 1P +P. 1P ) ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. ( 1P +P. 1P ) ) ) >. ] ~R ) |
| 46 | 11 45 | eqtr4d | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R [ <. ( 1P +P. 1P ) , 1P >. ] ~R ) = [ <. x , y >. ] ~R ) |
| 47 | 6 46 | eqtrid | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R 1R ) = [ <. x , y >. ] ~R ) |
| 48 | 1 4 47 | ecoptocl | |- ( A e. R. -> ( A .R 1R ) = A ) |