This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pn0sr | |- ( A e. R. -> ( A +R ( A .R -1R ) ) = 0R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1idsr | |- ( A e. R. -> ( A .R 1R ) = A ) |
|
| 2 | 1 | oveq1d | |- ( A e. R. -> ( ( A .R 1R ) +R ( A .R -1R ) ) = ( A +R ( A .R -1R ) ) ) |
| 3 | distrsr | |- ( A .R ( -1R +R 1R ) ) = ( ( A .R -1R ) +R ( A .R 1R ) ) |
|
| 4 | m1p1sr | |- ( -1R +R 1R ) = 0R |
|
| 5 | 4 | oveq2i | |- ( A .R ( -1R +R 1R ) ) = ( A .R 0R ) |
| 6 | addcomsr | |- ( ( A .R -1R ) +R ( A .R 1R ) ) = ( ( A .R 1R ) +R ( A .R -1R ) ) |
|
| 7 | 3 5 6 | 3eqtr3i | |- ( A .R 0R ) = ( ( A .R 1R ) +R ( A .R -1R ) ) |
| 8 | 00sr | |- ( A e. R. -> ( A .R 0R ) = 0R ) |
|
| 9 | 7 8 | eqtr3id | |- ( A e. R. -> ( ( A .R 1R ) +R ( A .R -1R ) ) = 0R ) |
| 10 | 2 9 | eqtr3d | |- ( A e. R. -> ( A +R ( A .R -1R ) ) = 0R ) |