This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqgt0sr | ⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ≠ 0R ) → 0R <R ( 𝐴 ·R 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r | ⊢ 0R ∈ R | |
| 2 | ltsosr | ⊢ <R Or R | |
| 3 | sotrieq | ⊢ ( ( <R Or R ∧ ( 𝐴 ∈ R ∧ 0R ∈ R ) ) → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) ) | |
| 4 | 2 3 | mpan | ⊢ ( ( 𝐴 ∈ R ∧ 0R ∈ R ) → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) ) |
| 5 | 1 4 | mpan2 | ⊢ ( 𝐴 ∈ R → ( 𝐴 = 0R ↔ ¬ ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ) ) |
| 6 | 5 | necon2abid | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) ↔ 𝐴 ≠ 0R ) ) |
| 7 | m1r | ⊢ -1R ∈ R | |
| 8 | mulclsr | ⊢ ( ( 𝐴 ∈ R ∧ -1R ∈ R ) → ( 𝐴 ·R -1R ) ∈ R ) | |
| 9 | 7 8 | mpan2 | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R -1R ) ∈ R ) |
| 10 | ltasr | ⊢ ( ( 𝐴 ·R -1R ) ∈ R → ( 𝐴 <R 0R ↔ ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ R → ( 𝐴 <R 0R ↔ ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ) ) |
| 12 | addcomsr | ⊢ ( ( 𝐴 ·R -1R ) +R 𝐴 ) = ( 𝐴 +R ( 𝐴 ·R -1R ) ) | |
| 13 | pn0sr | ⊢ ( 𝐴 ∈ R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R ) | |
| 14 | 12 13 | eqtrid | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R -1R ) +R 𝐴 ) = 0R ) |
| 15 | 0idsr | ⊢ ( ( 𝐴 ·R -1R ) ∈ R → ( ( 𝐴 ·R -1R ) +R 0R ) = ( 𝐴 ·R -1R ) ) | |
| 16 | 9 15 | syl | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R -1R ) +R 0R ) = ( 𝐴 ·R -1R ) ) |
| 17 | 14 16 | breq12d | ⊢ ( 𝐴 ∈ R → ( ( ( 𝐴 ·R -1R ) +R 𝐴 ) <R ( ( 𝐴 ·R -1R ) +R 0R ) ↔ 0R <R ( 𝐴 ·R -1R ) ) ) |
| 18 | 11 17 | bitrd | ⊢ ( 𝐴 ∈ R → ( 𝐴 <R 0R ↔ 0R <R ( 𝐴 ·R -1R ) ) ) |
| 19 | mulgt0sr | ⊢ ( ( 0R <R ( 𝐴 ·R -1R ) ∧ 0R <R ( 𝐴 ·R -1R ) ) → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ) | |
| 20 | 19 | anidms | ⊢ ( 0R <R ( 𝐴 ·R -1R ) → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ) |
| 21 | 18 20 | biimtrdi | ⊢ ( 𝐴 ∈ R → ( 𝐴 <R 0R → 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ) ) |
| 22 | mulcomsr | ⊢ ( -1R ·R 𝐴 ) = ( 𝐴 ·R -1R ) | |
| 23 | 22 | oveq1i | ⊢ ( ( -1R ·R 𝐴 ) ·R -1R ) = ( ( 𝐴 ·R -1R ) ·R -1R ) |
| 24 | mulasssr | ⊢ ( ( -1R ·R 𝐴 ) ·R -1R ) = ( -1R ·R ( 𝐴 ·R -1R ) ) | |
| 25 | mulasssr | ⊢ ( ( 𝐴 ·R -1R ) ·R -1R ) = ( 𝐴 ·R ( -1R ·R -1R ) ) | |
| 26 | 23 24 25 | 3eqtr3i | ⊢ ( -1R ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R ( -1R ·R -1R ) ) |
| 27 | m1m1sr | ⊢ ( -1R ·R -1R ) = 1R | |
| 28 | 27 | oveq2i | ⊢ ( 𝐴 ·R ( -1R ·R -1R ) ) = ( 𝐴 ·R 1R ) |
| 29 | 26 28 | eqtri | ⊢ ( -1R ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R 1R ) |
| 30 | 29 | oveq2i | ⊢ ( 𝐴 ·R ( -1R ·R ( 𝐴 ·R -1R ) ) ) = ( 𝐴 ·R ( 𝐴 ·R 1R ) ) |
| 31 | mulasssr | ⊢ ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R ( -1R ·R ( 𝐴 ·R -1R ) ) ) | |
| 32 | mulasssr | ⊢ ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R ( 𝐴 ·R 1R ) ) | |
| 33 | 30 31 32 | 3eqtr4i | ⊢ ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( ( 𝐴 ·R 𝐴 ) ·R 1R ) |
| 34 | mulclsr | ⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ∈ R ) → ( 𝐴 ·R 𝐴 ) ∈ R ) | |
| 35 | 1idsr | ⊢ ( ( 𝐴 ·R 𝐴 ) ∈ R → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ∈ R ) → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) ) |
| 37 | 36 | anidms | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R 𝐴 ) ·R 1R ) = ( 𝐴 ·R 𝐴 ) ) |
| 38 | 33 37 | eqtrid | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) = ( 𝐴 ·R 𝐴 ) ) |
| 39 | 38 | breq2d | ⊢ ( 𝐴 ∈ R → ( 0R <R ( ( 𝐴 ·R -1R ) ·R ( 𝐴 ·R -1R ) ) ↔ 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 40 | 21 39 | sylibd | ⊢ ( 𝐴 ∈ R → ( 𝐴 <R 0R → 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 41 | mulgt0sr | ⊢ ( ( 0R <R 𝐴 ∧ 0R <R 𝐴 ) → 0R <R ( 𝐴 ·R 𝐴 ) ) | |
| 42 | 41 | anidms | ⊢ ( 0R <R 𝐴 → 0R <R ( 𝐴 ·R 𝐴 ) ) |
| 43 | 42 | a1i | ⊢ ( 𝐴 ∈ R → ( 0R <R 𝐴 → 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 44 | 40 43 | jaod | ⊢ ( 𝐴 ∈ R → ( ( 𝐴 <R 0R ∨ 0R <R 𝐴 ) → 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 45 | 6 44 | sylbird | ⊢ ( 𝐴 ∈ R → ( 𝐴 ≠ 0R → 0R <R ( 𝐴 ·R 𝐴 ) ) ) |
| 46 | 45 | imp | ⊢ ( ( 𝐴 ∈ R ∧ 𝐴 ≠ 0R ) → 0R <R ( 𝐴 ·R 𝐴 ) ) |