This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsosr | |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | breq1 | |- ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R |
|
| 3 | eqeq1 | |- ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R <-> f = [ <. z , w >. ] ~R ) ) |
|
| 4 | breq2 | |- ( [ <. x , y >. ] ~R = f -> ( [ <. z , w >. ] ~R |
|
| 5 | 3 4 | orbi12d | |- ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 6 | 5 | notbid | |- ( [ <. x , y >. ] ~R = f -> ( -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 7 | 2 6 | bibi12d | |- ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R |
| 8 | breq2 | |- ( [ <. z , w >. ] ~R = g -> ( f |
|
| 9 | eqeq2 | |- ( [ <. z , w >. ] ~R = g -> ( f = [ <. z , w >. ] ~R <-> f = g ) ) |
|
| 10 | breq1 | |- ( [ <. z , w >. ] ~R = g -> ( [ <. z , w >. ] ~R |
|
| 11 | 9 10 | orbi12d | |- ( [ <. z , w >. ] ~R = g -> ( ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 12 | 11 | notbid | |- ( [ <. z , w >. ] ~R = g -> ( -. ( f = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 13 | 8 12 | bibi12d | |- ( [ <. z , w >. ] ~R = g -> ( ( f |
| 14 | ltsrpr | |- ( [ <. x , y >. ] ~R |
|
| 15 | addclpr | |- ( ( x e. P. /\ w e. P. ) -> ( x +P. w ) e. P. ) |
|
| 16 | addclpr | |- ( ( y e. P. /\ z e. P. ) -> ( y +P. z ) e. P. ) |
|
| 17 | ltsopr | |- |
|
| 18 | sotric | |- ( ( |
|
| 19 | 17 18 | mpan | |- ( ( ( x +P. w ) e. P. /\ ( y +P. z ) e. P. ) -> ( ( x +P. w ) |
| 20 | 15 16 19 | syl2an | |- ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x +P. w ) |
| 21 | 20 | an42s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. w ) |
| 22 | enreceq | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R <-> ( x +P. w ) = ( y +P. z ) ) ) |
|
| 23 | ltsrpr | |- ( [ <. z , w >. ] ~R |
|
| 24 | addcompr | |- ( z +P. y ) = ( y +P. z ) |
|
| 25 | addcompr | |- ( w +P. x ) = ( x +P. w ) |
|
| 26 | 24 25 | breq12i | |- ( ( z +P. y ) |
| 27 | 23 26 | bitri | |- ( [ <. z , w >. ] ~R |
| 28 | 27 | a1i | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. z , w >. ] ~R |
| 29 | 22 28 | orbi12d | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 30 | 29 | notbid | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( -. ( [ <. x , y >. ] ~R = [ <. z , w >. ] ~R \/ [ <. z , w >. ] ~R |
| 31 | 21 30 | bitr4d | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. w ) |
| 32 | 14 31 | bitrid | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R |
| 33 | 1 7 13 32 | 2ecoptocl | |- ( ( f e. R. /\ g e. R. ) -> ( f |
| 34 | 2 | anbi1d | |- ( [ <. x , y >. ] ~R = f -> ( ( [ <. x , y >. ] ~R |
| 35 | breq1 | |- ( [ <. x , y >. ] ~R = f -> ( [ <. x , y >. ] ~R |
|
| 36 | 34 35 | imbi12d | |- ( [ <. x , y >. ] ~R = f -> ( ( ( [ <. x , y >. ] ~R |
| 37 | breq1 | |- ( [ <. z , w >. ] ~R = g -> ( [ <. z , w >. ] ~R |
|
| 38 | 8 37 | anbi12d | |- ( [ <. z , w >. ] ~R = g -> ( ( f |
| 39 | 38 | imbi1d | |- ( [ <. z , w >. ] ~R = g -> ( ( ( f |
| 40 | breq2 | |- ( [ <. v , u >. ] ~R = h -> ( g |
|
| 41 | 40 | anbi2d | |- ( [ <. v , u >. ] ~R = h -> ( ( f |
| 42 | breq2 | |- ( [ <. v , u >. ] ~R = h -> ( f |
|
| 43 | 41 42 | imbi12d | |- ( [ <. v , u >. ] ~R = h -> ( ( ( f |
| 44 | ovex | |- ( x +P. w ) e. _V |
|
| 45 | ovex | |- ( y +P. z ) e. _V |
|
| 46 | ltapr | |- ( h e. P. -> ( f |
|
| 47 | vex | |- u e. _V |
|
| 48 | addcompr | |- ( f +P. g ) = ( g +P. f ) |
|
| 49 | 44 45 46 47 48 | caovord2 | |- ( u e. P. -> ( ( x +P. w ) |
| 50 | addasspr | |- ( ( x +P. w ) +P. u ) = ( x +P. ( w +P. u ) ) |
|
| 51 | addasspr | |- ( ( y +P. z ) +P. u ) = ( y +P. ( z +P. u ) ) |
|
| 52 | 50 51 | breq12i | |- ( ( ( x +P. w ) +P. u ) |
| 53 | 49 52 | bitrdi | |- ( u e. P. -> ( ( x +P. w ) |
| 54 | 14 53 | bitrid | |- ( u e. P. -> ( [ <. x , y >. ] ~R |
| 55 | ltsrpr | |- ( [ <. z , w >. ] ~R |
|
| 56 | ltapr | |- ( y e. P. -> ( ( z +P. u ) |
|
| 57 | 55 56 | bitrid | |- ( y e. P. -> ( [ <. z , w >. ] ~R |
| 58 | 54 57 | bi2anan9r | |- ( ( y e. P. /\ u e. P. ) -> ( ( [ <. x , y >. ] ~R |
| 59 | ltrelpr | |- |
|
| 60 | 17 59 | sotri | |- ( ( ( x +P. ( w +P. u ) ) |
| 61 | dmplp | |- dom +P. = ( P. X. P. ) |
|
| 62 | 0npr | |- -. (/) e. P. |
|
| 63 | ltapr | |- ( w e. P. -> ( ( x +P. u ) |
|
| 64 | 61 59 62 63 | ndmovordi | |- ( ( w +P. ( x +P. u ) ) |
| 65 | vex | |- x e. _V |
|
| 66 | vex | |- w e. _V |
|
| 67 | addasspr | |- ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) ) |
|
| 68 | 65 66 47 48 67 | caov12 | |- ( x +P. ( w +P. u ) ) = ( w +P. ( x +P. u ) ) |
| 69 | vex | |- y e. _V |
|
| 70 | vex | |- v e. _V |
|
| 71 | 69 66 70 48 67 | caov12 | |- ( y +P. ( w +P. v ) ) = ( w +P. ( y +P. v ) ) |
| 72 | 68 71 | breq12i | |- ( ( x +P. ( w +P. u ) ) |
| 73 | ltsrpr | |- ( [ <. x , y >. ] ~R |
|
| 74 | 64 72 73 | 3imtr4i | |- ( ( x +P. ( w +P. u ) ) |
| 75 | 60 74 | syl | |- ( ( ( x +P. ( w +P. u ) ) |
| 76 | 58 75 | biimtrdi | |- ( ( y e. P. /\ u e. P. ) -> ( ( [ <. x , y >. ] ~R |
| 77 | 76 | ad2ant2l | |- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( [ <. x , y >. ] ~R |
| 78 | 77 | 3adant2 | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( [ <. x , y >. ] ~R |
| 79 | 1 36 39 43 78 | 3ecoptocl | |- ( ( f e. R. /\ g e. R. /\ h e. R. ) -> ( ( f |
| 80 | 33 79 | isso2i | |- |