This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1r | |- -1R e. R. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr | |- 1P e. P. |
|
| 2 | addclpr | |- ( ( 1P e. P. /\ 1P e. P. ) -> ( 1P +P. 1P ) e. P. ) |
|
| 3 | 1 1 2 | mp2an | |- ( 1P +P. 1P ) e. P. |
| 4 | opelxpi | |- ( ( 1P e. P. /\ ( 1P +P. 1P ) e. P. ) -> <. 1P , ( 1P +P. 1P ) >. e. ( P. X. P. ) ) |
|
| 5 | 1 3 4 | mp2an | |- <. 1P , ( 1P +P. 1P ) >. e. ( P. X. P. ) |
| 6 | enrex | |- ~R e. _V |
|
| 7 | 6 | ecelqsi | |- ( <. 1P , ( 1P +P. 1P ) >. e. ( P. X. P. ) -> [ <. 1P , ( 1P +P. 1P ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 8 | 5 7 | ax-mp | |- [ <. 1P , ( 1P +P. 1P ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) |
| 9 | df-m1r | |- -1R = [ <. 1P , ( 1P +P. 1P ) >. ] ~R |
|
| 10 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 11 | 8 9 10 | 3eltr4i | |- -1R e. R. |