This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition. (Contributed by NM, 10-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltasr | |- ( C e. R. -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmaddsr | |- dom +R = ( R. X. R. ) |
|
| 2 | ltrelsr | |- |
|
| 3 | 0nsr | |- -. (/) e. R. |
|
| 4 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 5 | oveq1 | |- ( [ <. v , u >. ] ~R = C -> ( [ <. v , u >. ] ~R +R [ <. x , y >. ] ~R ) = ( C +R [ <. x , y >. ] ~R ) ) |
|
| 6 | oveq1 | |- ( [ <. v , u >. ] ~R = C -> ( [ <. v , u >. ] ~R +R [ <. z , w >. ] ~R ) = ( C +R [ <. z , w >. ] ~R ) ) |
|
| 7 | 5 6 | breq12d | |- ( [ <. v , u >. ] ~R = C -> ( ( [ <. v , u >. ] ~R +R [ <. x , y >. ] ~R ) |
| 8 | 7 | bibi2d | |- ( [ <. v , u >. ] ~R = C -> ( ( [ <. x , y >. ] ~R |
| 9 | breq1 | |- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R |
|
| 10 | oveq2 | |- ( [ <. x , y >. ] ~R = A -> ( C +R [ <. x , y >. ] ~R ) = ( C +R A ) ) |
|
| 11 | 10 | breq1d | |- ( [ <. x , y >. ] ~R = A -> ( ( C +R [ <. x , y >. ] ~R ) |
| 12 | 9 11 | bibi12d | |- ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R |
| 13 | breq2 | |- ( [ <. z , w >. ] ~R = B -> ( A |
|
| 14 | oveq2 | |- ( [ <. z , w >. ] ~R = B -> ( C +R [ <. z , w >. ] ~R ) = ( C +R B ) ) |
|
| 15 | 14 | breq2d | |- ( [ <. z , w >. ] ~R = B -> ( ( C +R A ) |
| 16 | 13 15 | bibi12d | |- ( [ <. z , w >. ] ~R = B -> ( ( A |
| 17 | addclpr | |- ( ( v e. P. /\ u e. P. ) -> ( v +P. u ) e. P. ) |
|
| 18 | 17 | 3ad2ant1 | |- ( ( ( v e. P. /\ u e. P. ) /\ ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( v +P. u ) e. P. ) |
| 19 | ltapr | |- ( ( v +P. u ) e. P. -> ( ( x +P. w ) |
|
| 20 | ltsrpr | |- ( [ <. x , y >. ] ~R |
|
| 21 | ltsrpr | |- ( [ <. ( v +P. x ) , ( u +P. y ) >. ] ~R |
|
| 22 | vex | |- v e. _V |
|
| 23 | vex | |- x e. _V |
|
| 24 | vex | |- u e. _V |
|
| 25 | addcompr | |- ( y +P. z ) = ( z +P. y ) |
|
| 26 | addasspr | |- ( ( y +P. z ) +P. f ) = ( y +P. ( z +P. f ) ) |
|
| 27 | vex | |- w e. _V |
|
| 28 | 22 23 24 25 26 27 | caov4 | |- ( ( v +P. x ) +P. ( u +P. w ) ) = ( ( v +P. u ) +P. ( x +P. w ) ) |
| 29 | addcompr | |- ( ( u +P. y ) +P. ( v +P. z ) ) = ( ( v +P. z ) +P. ( u +P. y ) ) |
|
| 30 | vex | |- z e. _V |
|
| 31 | addcompr | |- ( x +P. w ) = ( w +P. x ) |
|
| 32 | addasspr | |- ( ( x +P. w ) +P. f ) = ( x +P. ( w +P. f ) ) |
|
| 33 | vex | |- y e. _V |
|
| 34 | 22 30 24 31 32 33 | caov42 | |- ( ( v +P. z ) +P. ( u +P. y ) ) = ( ( v +P. u ) +P. ( y +P. z ) ) |
| 35 | 29 34 | eqtri | |- ( ( u +P. y ) +P. ( v +P. z ) ) = ( ( v +P. u ) +P. ( y +P. z ) ) |
| 36 | 28 35 | breq12i | |- ( ( ( v +P. x ) +P. ( u +P. w ) ) |
| 37 | 21 36 | bitri | |- ( [ <. ( v +P. x ) , ( u +P. y ) >. ] ~R |
| 38 | 19 20 37 | 3bitr4g | |- ( ( v +P. u ) e. P. -> ( [ <. x , y >. ] ~R |
| 39 | 18 38 | syl | |- ( ( ( v e. P. /\ u e. P. ) /\ ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R |
| 40 | addsrpr | |- ( ( ( v e. P. /\ u e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( [ <. v , u >. ] ~R +R [ <. x , y >. ] ~R ) = [ <. ( v +P. x ) , ( u +P. y ) >. ] ~R ) |
|
| 41 | 40 | 3adant3 | |- ( ( ( v e. P. /\ u e. P. ) /\ ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. v , u >. ] ~R +R [ <. x , y >. ] ~R ) = [ <. ( v +P. x ) , ( u +P. y ) >. ] ~R ) |
| 42 | addsrpr | |- ( ( ( v e. P. /\ u e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. v , u >. ] ~R +R [ <. z , w >. ] ~R ) = [ <. ( v +P. z ) , ( u +P. w ) >. ] ~R ) |
|
| 43 | 42 | 3adant2 | |- ( ( ( v e. P. /\ u e. P. ) /\ ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. v , u >. ] ~R +R [ <. z , w >. ] ~R ) = [ <. ( v +P. z ) , ( u +P. w ) >. ] ~R ) |
| 44 | 41 43 | breq12d | |- ( ( ( v e. P. /\ u e. P. ) /\ ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( [ <. v , u >. ] ~R +R [ <. x , y >. ] ~R ) |
| 45 | 39 44 | bitr4d | |- ( ( ( v e. P. /\ u e. P. ) /\ ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R |
| 46 | 4 8 12 16 45 | 3ecoptocl | |- ( ( C e. R. /\ A e. R. /\ B e. R. ) -> ( A |
| 47 | 46 | 3coml | |- ( ( A e. R. /\ B e. R. /\ C e. R. ) -> ( A |
| 48 | 1 2 3 47 | ndmovord | |- ( C e. R. -> ( A |