This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 15-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recexsr | |- ( ( A e. R. /\ A =/= 0R ) -> E. x e. R. ( A .R x ) = 1R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0sr | |- ( ( A e. R. /\ A =/= 0R ) -> 0R |
|
| 2 | mulclsr | |- ( ( A e. R. /\ y e. R. ) -> ( A .R y ) e. R. ) |
|
| 3 | mulasssr | |- ( ( A .R A ) .R y ) = ( A .R ( A .R y ) ) |
|
| 4 | 3 | eqeq1i | |- ( ( ( A .R A ) .R y ) = 1R <-> ( A .R ( A .R y ) ) = 1R ) |
| 5 | oveq2 | |- ( x = ( A .R y ) -> ( A .R x ) = ( A .R ( A .R y ) ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = ( A .R y ) -> ( ( A .R x ) = 1R <-> ( A .R ( A .R y ) ) = 1R ) ) |
| 7 | 6 | rspcev | |- ( ( ( A .R y ) e. R. /\ ( A .R ( A .R y ) ) = 1R ) -> E. x e. R. ( A .R x ) = 1R ) |
| 8 | 4 7 | sylan2b | |- ( ( ( A .R y ) e. R. /\ ( ( A .R A ) .R y ) = 1R ) -> E. x e. R. ( A .R x ) = 1R ) |
| 9 | 2 8 | sylan | |- ( ( ( A e. R. /\ y e. R. ) /\ ( ( A .R A ) .R y ) = 1R ) -> E. x e. R. ( A .R x ) = 1R ) |
| 10 | 9 | rexlimdva2 | |- ( A e. R. -> ( E. y e. R. ( ( A .R A ) .R y ) = 1R -> E. x e. R. ( A .R x ) = 1R ) ) |
| 11 | recexsrlem | |- ( 0R |
|
| 12 | 10 11 | impel | |- ( ( A e. R. /\ 0R |
| 13 | 1 12 | syldan | |- ( ( A e. R. /\ A =/= 0R ) -> E. x e. R. ( A .R x ) = 1R ) |