This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . The supremum of the increasing sequence 1st o. G is a real number that is not in the range of F . (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
||
| ruc.5 | |- G = seq 0 ( D , C ) |
||
| ruc.6 | |- S = sup ( ran ( 1st o. G ) , RR , < ) |
||
| Assertion | ruclem12 | |- ( ph -> S e. ( RR \ ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
|
| 4 | ruc.5 | |- G = seq 0 ( D , C ) |
|
| 5 | ruc.6 | |- S = sup ( ran ( 1st o. G ) , RR , < ) |
|
| 6 | 1 2 3 4 | ruclem11 | |- ( ph -> ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ A. z e. ran ( 1st o. G ) z <_ 1 ) ) |
| 7 | 6 | simp1d | |- ( ph -> ran ( 1st o. G ) C_ RR ) |
| 8 | 6 | simp2d | |- ( ph -> ran ( 1st o. G ) =/= (/) ) |
| 9 | 1re | |- 1 e. RR |
|
| 10 | 6 | simp3d | |- ( ph -> A. z e. ran ( 1st o. G ) z <_ 1 ) |
| 11 | brralrspcev | |- ( ( 1 e. RR /\ A. z e. ran ( 1st o. G ) z <_ 1 ) -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
|
| 12 | 9 10 11 | sylancr | |- ( ph -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
| 13 | 7 8 12 | suprcld | |- ( ph -> sup ( ran ( 1st o. G ) , RR , < ) e. RR ) |
| 14 | 5 13 | eqeltrid | |- ( ph -> S e. RR ) |
| 15 | 1 | adantr | |- ( ( ph /\ n e. NN ) -> F : NN --> RR ) |
| 16 | 2 | adantr | |- ( ( ph /\ n e. NN ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 17 | 1 2 3 4 | ruclem6 | |- ( ph -> G : NN0 --> ( RR X. RR ) ) |
| 18 | nnm1nn0 | |- ( n e. NN -> ( n - 1 ) e. NN0 ) |
|
| 19 | ffvelcdm | |- ( ( G : NN0 --> ( RR X. RR ) /\ ( n - 1 ) e. NN0 ) -> ( G ` ( n - 1 ) ) e. ( RR X. RR ) ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( ph /\ n e. NN ) -> ( G ` ( n - 1 ) ) e. ( RR X. RR ) ) |
| 21 | xp1st | |- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` ( n - 1 ) ) ) e. RR ) |
|
| 22 | 20 21 | syl | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` ( n - 1 ) ) ) e. RR ) |
| 23 | xp2nd | |- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` ( n - 1 ) ) ) e. RR ) |
|
| 24 | 20 23 | syl | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` ( n - 1 ) ) ) e. RR ) |
| 25 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. RR ) |
| 26 | eqid | |- ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
|
| 27 | eqid | |- ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
|
| 28 | 1 2 3 4 | ruclem8 | |- ( ( ph /\ ( n - 1 ) e. NN0 ) -> ( 1st ` ( G ` ( n - 1 ) ) ) < ( 2nd ` ( G ` ( n - 1 ) ) ) ) |
| 29 | 18 28 | sylan2 | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` ( n - 1 ) ) ) < ( 2nd ` ( G ` ( n - 1 ) ) ) ) |
| 30 | 15 16 22 24 25 26 27 29 | ruclem3 | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) \/ ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) |
| 31 | 1 2 3 4 | ruclem7 | |- ( ( ph /\ ( n - 1 ) e. NN0 ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) ) |
| 32 | 18 31 | sylan2 | |- ( ( ph /\ n e. NN ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) ) |
| 33 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 34 | 33 | adantl | |- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 35 | ax-1cn | |- 1 e. CC |
|
| 36 | npcan | |- ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) |
|
| 37 | 34 35 36 | sylancl | |- ( ( ph /\ n e. NN ) -> ( ( n - 1 ) + 1 ) = n ) |
| 38 | 37 | fveq2d | |- ( ( ph /\ n e. NN ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( G ` n ) ) |
| 39 | 1st2nd2 | |- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( G ` ( n - 1 ) ) = <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. ) |
|
| 40 | 20 39 | syl | |- ( ( ph /\ n e. NN ) -> ( G ` ( n - 1 ) ) = <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. ) |
| 41 | 37 | fveq2d | |- ( ( ph /\ n e. NN ) -> ( F ` ( ( n - 1 ) + 1 ) ) = ( F ` n ) ) |
| 42 | 40 41 | oveq12d | |- ( ( ph /\ n e. NN ) -> ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) = ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
| 43 | 32 38 42 | 3eqtr3d | |- ( ( ph /\ n e. NN ) -> ( G ` n ) = ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
| 44 | 43 | fveq2d | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) |
| 45 | 44 | breq2d | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) <-> ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) ) |
| 46 | 43 | fveq2d | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) |
| 47 | 46 | breq1d | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) < ( F ` n ) <-> ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) |
| 48 | 45 47 | orbi12d | |- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) <-> ( ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) \/ ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) ) |
| 49 | 30 48 | mpbird | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) ) |
| 50 | 7 | adantr | |- ( ( ph /\ n e. NN ) -> ran ( 1st o. G ) C_ RR ) |
| 51 | 8 | adantr | |- ( ( ph /\ n e. NN ) -> ran ( 1st o. G ) =/= (/) ) |
| 52 | 12 | adantr | |- ( ( ph /\ n e. NN ) -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
| 53 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 54 | fvco3 | |- ( ( G : NN0 --> ( RR X. RR ) /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
|
| 55 | 17 53 54 | syl2an | |- ( ( ph /\ n e. NN ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
| 56 | 17 | adantr | |- ( ( ph /\ n e. NN ) -> G : NN0 --> ( RR X. RR ) ) |
| 57 | 1stcof | |- ( G : NN0 --> ( RR X. RR ) -> ( 1st o. G ) : NN0 --> RR ) |
|
| 58 | ffn | |- ( ( 1st o. G ) : NN0 --> RR -> ( 1st o. G ) Fn NN0 ) |
|
| 59 | 56 57 58 | 3syl | |- ( ( ph /\ n e. NN ) -> ( 1st o. G ) Fn NN0 ) |
| 60 | 53 | adantl | |- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
| 61 | fnfvelrn | |- ( ( ( 1st o. G ) Fn NN0 /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) e. ran ( 1st o. G ) ) |
|
| 62 | 59 60 61 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( ( 1st o. G ) ` n ) e. ran ( 1st o. G ) ) |
| 63 | 55 62 | eqeltrrd | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. ran ( 1st o. G ) ) |
| 64 | 50 51 52 63 | suprubd | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) <_ sup ( ran ( 1st o. G ) , RR , < ) ) |
| 65 | 64 5 | breqtrrdi | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) <_ S ) |
| 66 | ffvelcdm | |- ( ( G : NN0 --> ( RR X. RR ) /\ n e. NN0 ) -> ( G ` n ) e. ( RR X. RR ) ) |
|
| 67 | 17 53 66 | syl2an | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ( RR X. RR ) ) |
| 68 | xp1st | |- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
|
| 69 | 67 68 | syl | |- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 70 | 14 | adantr | |- ( ( ph /\ n e. NN ) -> S e. RR ) |
| 71 | ltletr | |- ( ( ( F ` n ) e. RR /\ ( 1st ` ( G ` n ) ) e. RR /\ S e. RR ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ S ) -> ( F ` n ) < S ) ) |
|
| 72 | 25 69 70 71 | syl3anc | |- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ S ) -> ( F ` n ) < S ) ) |
| 73 | 65 72 | mpan2d | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) -> ( F ` n ) < S ) ) |
| 74 | fvco3 | |- ( ( G : NN0 --> ( RR X. RR ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) = ( 1st ` ( G ` k ) ) ) |
|
| 75 | 56 74 | sylan | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) = ( 1st ` ( G ` k ) ) ) |
| 76 | 56 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( G ` k ) e. ( RR X. RR ) ) |
| 77 | xp1st | |- ( ( G ` k ) e. ( RR X. RR ) -> ( 1st ` ( G ` k ) ) e. RR ) |
|
| 78 | 76 77 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) e. RR ) |
| 79 | xp2nd | |- ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
|
| 80 | 67 79 | syl | |- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 81 | 80 | adantr | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 82 | 15 | adantr | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> F : NN --> RR ) |
| 83 | 16 | adantr | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 84 | simpr | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> k e. NN0 ) |
|
| 85 | 60 | adantr | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> n e. NN0 ) |
| 86 | 82 83 3 4 84 85 | ruclem10 | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) < ( 2nd ` ( G ` n ) ) ) |
| 87 | 78 81 86 | ltled | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) <_ ( 2nd ` ( G ` n ) ) ) |
| 88 | 75 87 | eqbrtrd | |- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) |
| 89 | 88 | ralrimiva | |- ( ( ph /\ n e. NN ) -> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) |
| 90 | breq1 | |- ( z = ( ( 1st o. G ) ` k ) -> ( z <_ ( 2nd ` ( G ` n ) ) <-> ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
|
| 91 | 90 | ralrn | |- ( ( 1st o. G ) Fn NN0 -> ( A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) <-> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
| 92 | 59 91 | syl | |- ( ( ph /\ n e. NN ) -> ( A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) <-> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
| 93 | 89 92 | mpbird | |- ( ( ph /\ n e. NN ) -> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) |
| 94 | suprleub | |- ( ( ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) /\ ( 2nd ` ( G ` n ) ) e. RR ) -> ( sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) <-> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) ) |
|
| 95 | 50 51 52 80 94 | syl31anc | |- ( ( ph /\ n e. NN ) -> ( sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) <-> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) ) |
| 96 | 93 95 | mpbird | |- ( ( ph /\ n e. NN ) -> sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) ) |
| 97 | 5 96 | eqbrtrid | |- ( ( ph /\ n e. NN ) -> S <_ ( 2nd ` ( G ` n ) ) ) |
| 98 | lelttr | |- ( ( S e. RR /\ ( 2nd ` ( G ` n ) ) e. RR /\ ( F ` n ) e. RR ) -> ( ( S <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> S < ( F ` n ) ) ) |
|
| 99 | 70 80 25 98 | syl3anc | |- ( ( ph /\ n e. NN ) -> ( ( S <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> S < ( F ` n ) ) ) |
| 100 | 97 99 | mpand | |- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) < ( F ` n ) -> S < ( F ` n ) ) ) |
| 101 | 73 100 | orim12d | |- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) ) |
| 102 | 49 101 | mpd | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) |
| 103 | 25 70 | lttri2d | |- ( ( ph /\ n e. NN ) -> ( ( F ` n ) =/= S <-> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) ) |
| 104 | 102 103 | mpbird | |- ( ( ph /\ n e. NN ) -> ( F ` n ) =/= S ) |
| 105 | 104 | neneqd | |- ( ( ph /\ n e. NN ) -> -. ( F ` n ) = S ) |
| 106 | 105 | nrexdv | |- ( ph -> -. E. n e. NN ( F ` n ) = S ) |
| 107 | risset | |- ( S e. ran F <-> E. z e. ran F z = S ) |
|
| 108 | ffn | |- ( F : NN --> RR -> F Fn NN ) |
|
| 109 | eqeq1 | |- ( z = ( F ` n ) -> ( z = S <-> ( F ` n ) = S ) ) |
|
| 110 | 109 | rexrn | |- ( F Fn NN -> ( E. z e. ran F z = S <-> E. n e. NN ( F ` n ) = S ) ) |
| 111 | 1 108 110 | 3syl | |- ( ph -> ( E. z e. ran F z = S <-> E. n e. NN ( F ` n ) = S ) ) |
| 112 | 107 111 | bitrid | |- ( ph -> ( S e. ran F <-> E. n e. NN ( F ` n ) = S ) ) |
| 113 | 106 112 | mtbird | |- ( ph -> -. S e. ran F ) |
| 114 | 14 113 | eldifd | |- ( ph -> S e. ( RR \ ran F ) ) |