This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Domain and codomain of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
||
| ruc.5 | |- G = seq 0 ( D , C ) |
||
| Assertion | ruclem6 | |- ( ph -> G : NN0 --> ( RR X. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
|
| 4 | ruc.5 | |- G = seq 0 ( D , C ) |
|
| 5 | 4 | fveq1i | |- ( G ` 0 ) = ( seq 0 ( D , C ) ` 0 ) |
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( D , C ) ` 0 ) = ( C ` 0 ) ) |
|
| 8 | 6 7 | ax-mp | |- ( seq 0 ( D , C ) ` 0 ) = ( C ` 0 ) |
| 9 | 5 8 | eqtri | |- ( G ` 0 ) = ( C ` 0 ) |
| 10 | 1 2 3 4 | ruclem4 | |- ( ph -> ( G ` 0 ) = <. 0 , 1 >. ) |
| 11 | 9 10 | eqtr3id | |- ( ph -> ( C ` 0 ) = <. 0 , 1 >. ) |
| 12 | 0re | |- 0 e. RR |
|
| 13 | 1re | |- 1 e. RR |
|
| 14 | opelxpi | |- ( ( 0 e. RR /\ 1 e. RR ) -> <. 0 , 1 >. e. ( RR X. RR ) ) |
|
| 15 | 12 13 14 | mp2an | |- <. 0 , 1 >. e. ( RR X. RR ) |
| 16 | 11 15 | eqeltrdi | |- ( ph -> ( C ` 0 ) e. ( RR X. RR ) ) |
| 17 | 1st2nd2 | |- ( z e. ( RR X. RR ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 18 | 17 | ad2antrl | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 19 | 18 | oveq1d | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( z D w ) = ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) |
| 20 | 1 | adantr | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> F : NN --> RR ) |
| 21 | 2 | adantr | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 22 | xp1st | |- ( z e. ( RR X. RR ) -> ( 1st ` z ) e. RR ) |
|
| 23 | 22 | ad2antrl | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( 1st ` z ) e. RR ) |
| 24 | xp2nd | |- ( z e. ( RR X. RR ) -> ( 2nd ` z ) e. RR ) |
|
| 25 | 24 | ad2antrl | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( 2nd ` z ) e. RR ) |
| 26 | simprr | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> w e. RR ) |
|
| 27 | eqid | |- ( 1st ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) = ( 1st ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) |
|
| 28 | eqid | |- ( 2nd ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) = ( 2nd ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) |
|
| 29 | 20 21 23 25 26 27 28 | ruclem1 | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) e. ( RR X. RR ) /\ ( 1st ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) = if ( ( ( ( 1st ` z ) + ( 2nd ` z ) ) / 2 ) < w , ( 1st ` z ) , ( ( ( ( ( 1st ` z ) + ( 2nd ` z ) ) / 2 ) + ( 2nd ` z ) ) / 2 ) ) /\ ( 2nd ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) = if ( ( ( ( 1st ` z ) + ( 2nd ` z ) ) / 2 ) < w , ( ( ( 1st ` z ) + ( 2nd ` z ) ) / 2 ) , ( 2nd ` z ) ) ) ) |
| 30 | 29 | simp1d | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) e. ( RR X. RR ) ) |
| 31 | 19 30 | eqeltrd | |- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( z D w ) e. ( RR X. RR ) ) |
| 32 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 33 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 34 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 35 | 34 | fveq2i | |- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
| 36 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 37 | 35 36 | eqtr4i | |- ( ZZ>= ` ( 0 + 1 ) ) = NN |
| 38 | 37 | eleq2i | |- ( z e. ( ZZ>= ` ( 0 + 1 ) ) <-> z e. NN ) |
| 39 | 3 | equncomi | |- C = ( F u. { <. 0 , <. 0 , 1 >. >. } ) |
| 40 | 39 | fveq1i | |- ( C ` z ) = ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` z ) |
| 41 | nnne0 | |- ( z e. NN -> z =/= 0 ) |
|
| 42 | 41 | necomd | |- ( z e. NN -> 0 =/= z ) |
| 43 | fvunsn | |- ( 0 =/= z -> ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` z ) = ( F ` z ) ) |
|
| 44 | 42 43 | syl | |- ( z e. NN -> ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` z ) = ( F ` z ) ) |
| 45 | 40 44 | eqtrid | |- ( z e. NN -> ( C ` z ) = ( F ` z ) ) |
| 46 | 45 | adantl | |- ( ( ph /\ z e. NN ) -> ( C ` z ) = ( F ` z ) ) |
| 47 | 1 | ffvelcdmda | |- ( ( ph /\ z e. NN ) -> ( F ` z ) e. RR ) |
| 48 | 46 47 | eqeltrd | |- ( ( ph /\ z e. NN ) -> ( C ` z ) e. RR ) |
| 49 | 38 48 | sylan2b | |- ( ( ph /\ z e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( C ` z ) e. RR ) |
| 50 | 16 31 32 33 49 | seqf2 | |- ( ph -> seq 0 ( D , C ) : NN0 --> ( RR X. RR ) ) |
| 51 | 4 | feq1i | |- ( G : NN0 --> ( RR X. RR ) <-> seq 0 ( D , C ) : NN0 --> ( RR X. RR ) ) |
| 52 | 50 51 | sylibr | |- ( ph -> G : NN0 --> ( RR X. RR ) ) |