This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . There is no function that maps NN onto RR . (Use nex if you want this in the form -. E. f f : NN -onto-> RR .) (Contributed by NM, 14-Oct-2004) (Proof shortened by Fan Zheng, 6-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ruclem13 | |- -. F : NN -onto-> RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | forn | |- ( F : NN -onto-> RR -> ran F = RR ) |
|
| 2 | 1 | difeq2d | |- ( F : NN -onto-> RR -> ( RR \ ran F ) = ( RR \ RR ) ) |
| 3 | difid | |- ( RR \ RR ) = (/) |
|
| 4 | 2 3 | eqtrdi | |- ( F : NN -onto-> RR -> ( RR \ ran F ) = (/) ) |
| 5 | reex | |- RR e. _V |
|
| 6 | 5 5 | xpex | |- ( RR X. RR ) e. _V |
| 7 | 6 5 | mpoex | |- ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) e. _V |
| 8 | 7 | isseti | |- E. d d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) |
| 9 | fof | |- ( F : NN -onto-> RR -> F : NN --> RR ) |
|
| 10 | 9 | adantr | |- ( ( F : NN -onto-> RR /\ d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) -> F : NN --> RR ) |
| 11 | simpr | |- ( ( F : NN -onto-> RR /\ d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) -> d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 12 | eqid | |- ( { <. 0 , <. 0 , 1 >. >. } u. F ) = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
|
| 13 | eqid | |- seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) = seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) |
|
| 14 | eqid | |- sup ( ran ( 1st o. seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) ) , RR , < ) = sup ( ran ( 1st o. seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) ) , RR , < ) |
|
| 15 | 10 11 12 13 14 | ruclem12 | |- ( ( F : NN -onto-> RR /\ d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) -> sup ( ran ( 1st o. seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) ) , RR , < ) e. ( RR \ ran F ) ) |
| 16 | n0i | |- ( sup ( ran ( 1st o. seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) ) , RR , < ) e. ( RR \ ran F ) -> -. ( RR \ ran F ) = (/) ) |
|
| 17 | 15 16 | syl | |- ( ( F : NN -onto-> RR /\ d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) -> -. ( RR \ ran F ) = (/) ) |
| 18 | 17 | ex | |- ( F : NN -onto-> RR -> ( d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) -> -. ( RR \ ran F ) = (/) ) ) |
| 19 | 18 | exlimdv | |- ( F : NN -onto-> RR -> ( E. d d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) -> -. ( RR \ ran F ) = (/) ) ) |
| 20 | 8 19 | mpi | |- ( F : NN -onto-> RR -> -. ( RR \ ran F ) = (/) ) |
| 21 | 4 20 | pm2.65i | |- -. F : NN -onto-> RR |