This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
||
| ruc.5 | |- G = seq 0 ( D , C ) |
||
| Assertion | ruclem7 | |- ( ( ph /\ N e. NN0 ) -> ( G ` ( N + 1 ) ) = ( ( G ` N ) D ( F ` ( N + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
|
| 4 | ruc.5 | |- G = seq 0 ( D , C ) |
|
| 5 | simpr | |- ( ( ph /\ N e. NN0 ) -> N e. NN0 ) |
|
| 6 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 7 | 5 6 | eleqtrdi | |- ( ( ph /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
| 8 | seqp1 | |- ( N e. ( ZZ>= ` 0 ) -> ( seq 0 ( D , C ) ` ( N + 1 ) ) = ( ( seq 0 ( D , C ) ` N ) D ( C ` ( N + 1 ) ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( ph /\ N e. NN0 ) -> ( seq 0 ( D , C ) ` ( N + 1 ) ) = ( ( seq 0 ( D , C ) ` N ) D ( C ` ( N + 1 ) ) ) ) |
| 10 | 4 | fveq1i | |- ( G ` ( N + 1 ) ) = ( seq 0 ( D , C ) ` ( N + 1 ) ) |
| 11 | 4 | fveq1i | |- ( G ` N ) = ( seq 0 ( D , C ) ` N ) |
| 12 | 11 | oveq1i | |- ( ( G ` N ) D ( C ` ( N + 1 ) ) ) = ( ( seq 0 ( D , C ) ` N ) D ( C ` ( N + 1 ) ) ) |
| 13 | 9 10 12 | 3eqtr4g | |- ( ( ph /\ N e. NN0 ) -> ( G ` ( N + 1 ) ) = ( ( G ` N ) D ( C ` ( N + 1 ) ) ) ) |
| 14 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 15 | 14 | adantl | |- ( ( ph /\ N e. NN0 ) -> ( N + 1 ) e. NN ) |
| 16 | 15 | nnne0d | |- ( ( ph /\ N e. NN0 ) -> ( N + 1 ) =/= 0 ) |
| 17 | 16 | necomd | |- ( ( ph /\ N e. NN0 ) -> 0 =/= ( N + 1 ) ) |
| 18 | 3 | equncomi | |- C = ( F u. { <. 0 , <. 0 , 1 >. >. } ) |
| 19 | 18 | fveq1i | |- ( C ` ( N + 1 ) ) = ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` ( N + 1 ) ) |
| 20 | fvunsn | |- ( 0 =/= ( N + 1 ) -> ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
|
| 21 | 19 20 | eqtrid | |- ( 0 =/= ( N + 1 ) -> ( C ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
| 22 | 17 21 | syl | |- ( ( ph /\ N e. NN0 ) -> ( C ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
| 23 | 22 | oveq2d | |- ( ( ph /\ N e. NN0 ) -> ( ( G ` N ) D ( C ` ( N + 1 ) ) ) = ( ( G ` N ) D ( F ` ( N + 1 ) ) ) ) |
| 24 | 13 23 | eqtrd | |- ( ( ph /\ N e. NN0 ) -> ( G ` ( N + 1 ) ) = ( ( G ` N ) D ( F ` ( N + 1 ) ) ) ) |