This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Closure lemmas for supremum. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
||
| ruc.5 | |- G = seq 0 ( D , C ) |
||
| Assertion | ruclem11 | |- ( ph -> ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ A. z e. ran ( 1st o. G ) z <_ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
|
| 4 | ruc.5 | |- G = seq 0 ( D , C ) |
|
| 5 | 1 2 3 4 | ruclem6 | |- ( ph -> G : NN0 --> ( RR X. RR ) ) |
| 6 | 1stcof | |- ( G : NN0 --> ( RR X. RR ) -> ( 1st o. G ) : NN0 --> RR ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( 1st o. G ) : NN0 --> RR ) |
| 8 | 7 | frnd | |- ( ph -> ran ( 1st o. G ) C_ RR ) |
| 9 | 7 | fdmd | |- ( ph -> dom ( 1st o. G ) = NN0 ) |
| 10 | 0nn0 | |- 0 e. NN0 |
|
| 11 | ne0i | |- ( 0 e. NN0 -> NN0 =/= (/) ) |
|
| 12 | 10 11 | mp1i | |- ( ph -> NN0 =/= (/) ) |
| 13 | 9 12 | eqnetrd | |- ( ph -> dom ( 1st o. G ) =/= (/) ) |
| 14 | dm0rn0 | |- ( dom ( 1st o. G ) = (/) <-> ran ( 1st o. G ) = (/) ) |
|
| 15 | 14 | necon3bii | |- ( dom ( 1st o. G ) =/= (/) <-> ran ( 1st o. G ) =/= (/) ) |
| 16 | 13 15 | sylib | |- ( ph -> ran ( 1st o. G ) =/= (/) ) |
| 17 | fvco3 | |- ( ( G : NN0 --> ( RR X. RR ) /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
|
| 18 | 5 17 | sylan | |- ( ( ph /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
| 19 | 1 | adantr | |- ( ( ph /\ n e. NN0 ) -> F : NN --> RR ) |
| 20 | 2 | adantr | |- ( ( ph /\ n e. NN0 ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 21 | simpr | |- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
|
| 22 | 10 | a1i | |- ( ( ph /\ n e. NN0 ) -> 0 e. NN0 ) |
| 23 | 19 20 3 4 21 22 | ruclem10 | |- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` 0 ) ) ) |
| 24 | 1 2 3 4 | ruclem4 | |- ( ph -> ( G ` 0 ) = <. 0 , 1 >. ) |
| 25 | 24 | fveq2d | |- ( ph -> ( 2nd ` ( G ` 0 ) ) = ( 2nd ` <. 0 , 1 >. ) ) |
| 26 | c0ex | |- 0 e. _V |
|
| 27 | 1ex | |- 1 e. _V |
|
| 28 | 26 27 | op2nd | |- ( 2nd ` <. 0 , 1 >. ) = 1 |
| 29 | 25 28 | eqtrdi | |- ( ph -> ( 2nd ` ( G ` 0 ) ) = 1 ) |
| 30 | 29 | adantr | |- ( ( ph /\ n e. NN0 ) -> ( 2nd ` ( G ` 0 ) ) = 1 ) |
| 31 | 23 30 | breqtrd | |- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) < 1 ) |
| 32 | 5 | ffvelcdmda | |- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. ( RR X. RR ) ) |
| 33 | xp1st | |- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
|
| 34 | 32 33 | syl | |- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 35 | 1re | |- 1 e. RR |
|
| 36 | ltle | |- ( ( ( 1st ` ( G ` n ) ) e. RR /\ 1 e. RR ) -> ( ( 1st ` ( G ` n ) ) < 1 -> ( 1st ` ( G ` n ) ) <_ 1 ) ) |
|
| 37 | 34 35 36 | sylancl | |- ( ( ph /\ n e. NN0 ) -> ( ( 1st ` ( G ` n ) ) < 1 -> ( 1st ` ( G ` n ) ) <_ 1 ) ) |
| 38 | 31 37 | mpd | |- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) <_ 1 ) |
| 39 | 18 38 | eqbrtrd | |- ( ( ph /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) <_ 1 ) |
| 40 | 39 | ralrimiva | |- ( ph -> A. n e. NN0 ( ( 1st o. G ) ` n ) <_ 1 ) |
| 41 | 7 | ffnd | |- ( ph -> ( 1st o. G ) Fn NN0 ) |
| 42 | breq1 | |- ( z = ( ( 1st o. G ) ` n ) -> ( z <_ 1 <-> ( ( 1st o. G ) ` n ) <_ 1 ) ) |
|
| 43 | 42 | ralrn | |- ( ( 1st o. G ) Fn NN0 -> ( A. z e. ran ( 1st o. G ) z <_ 1 <-> A. n e. NN0 ( ( 1st o. G ) ` n ) <_ 1 ) ) |
| 44 | 41 43 | syl | |- ( ph -> ( A. z e. ran ( 1st o. G ) z <_ 1 <-> A. n e. NN0 ( ( 1st o. G ) ` n ) <_ 1 ) ) |
| 45 | 40 44 | mpbird | |- ( ph -> A. z e. ran ( 1st o. G ) z <_ 1 ) |
| 46 | 8 16 45 | 3jca | |- ( ph -> ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ A. z e. ran ( 1st o. G ) z <_ 1 ) ) |